Unconditional quantum typicality
edit
Consider a density operator
ρ
{\displaystyle \rho }
with the following spectral decomposition :
ρ
=
∑
x
p
X
(
x
)
|
x
⟩
⟨
x
|
.
{\displaystyle \rho =\sum _{x}p_{X}(x)\vert x\rangle \langle x\vert .}
The weakly typical subspace is defined as the span of all vectors such that
the sample entropy
H
¯
(
x
n
)
{\displaystyle {\overline {H}}(x^{n})}
of their classical
label is close to the true entropy
H
(
X
)
{\displaystyle H(X)}
of the distribution
p
X
(
x
)
{\displaystyle p_{X}(x)}
:
T
δ
X
n
≡
span
{
|
x
n
⟩
:
|
H
¯
(
x
n
)
−
H
(
X
)
|
≤
δ
}
,
{\displaystyle T_{\delta }^{X^{n}}\equiv {\text{span}}\left\{\left\vert x^{n}\right\rangle :\left\vert {\overline {H}}(x^{n})-H(X)\right\vert \leq \delta \right\},}
where
H
¯
(
x
n
)
≡
−
1
n
log
(
p
X
n
(
x
n
)
)
,
{\displaystyle {\overline {H}}(x^{n})\equiv -{\frac {1}{n}}\log(p_{X^{n}}(x^{n})),}
H
(
X
)
≡
−
∑
x
p
X
(
x
)
log
p
X
(
x
)
.
{\displaystyle H(X)\equiv -\sum _{x}p_{X}(x)\log p_{X}(x).}
The projector
Π
ρ
,
δ
n
{\displaystyle \Pi _{\rho ,\delta }^{n}}
onto the typical subspace of
ρ
{\displaystyle \rho }
is
defined as
Π
ρ
,
δ
n
≡
∑
x
n
∈
T
δ
X
n
|
x
n
⟩
⟨
x
n
|
,
{\displaystyle \Pi _{\rho ,\delta }^{n}\equiv \sum _{x^{n}\in T_{\delta }^{X^{n}}}\vert x^{n}\rangle \langle x^{n}\vert ,}
where we have "overloaded" the symbol
T
δ
X
n
{\displaystyle T_{\delta }^{X^{n}}}
to refer also to the set of
δ
{\displaystyle \delta }
-typical sequences:
T
δ
X
n
≡
{
x
n
:
|
H
¯
(
x
n
)
−
H
(
X
)
|
≤
δ
}
.
{\displaystyle T_{\delta }^{X^{n}}\equiv \left\{x^{n}:\left\vert {\overline {H}}\left(x^{n}\right)-H(X)\right\vert \leq \delta \right\}.}
The three important properties of the typical projector are as follows:
Tr
{
Π
ρ
,
δ
n
ρ
⊗
n
}
≥
1
−
ϵ
,
{\displaystyle {\text{Tr}}\left\{\Pi _{\rho ,\delta }^{n}\rho ^{\otimes n}\right\}\geq 1-\epsilon ,}
Tr
{
Π
ρ
,
δ
n
}
≤
2
n
[
H
(
X
)
+
δ
]
,
{\displaystyle {\text{Tr}}\left\{\Pi _{\rho ,\delta }^{n}\right\}\leq 2^{n\left[H\left(X\right)+\delta \right]},}
2
−
n
[
H
(
X
)
+
δ
]
Π
ρ
,
δ
n
≤
Π
ρ
,
δ
n
ρ
⊗
n
Π
ρ
,
δ
n
≤
2
−
n
[
H
(
X
)
−
δ
]
Π
ρ
,
δ
n
,
{\displaystyle 2^{-n\left[H(X)+\delta \right]}\Pi _{\rho ,\delta }^{n}\leq \Pi _{\rho ,\delta }^{n}\rho ^{\otimes n}\Pi _{\rho ,\delta }^{n}\leq 2^{-n\left[H(X)-\delta \right]}\Pi _{\rho ,\delta }^{n},}
where the first property holds for arbitrary
ϵ
,
δ
>
0
{\displaystyle \epsilon ,\delta >0}
and
sufficiently large
n
{\displaystyle n}
.
Conditional quantum typicality
edit
Consider an ensemble
{
p
X
(
x
)
,
ρ
x
}
x
∈
X
{\displaystyle \left\{p_{X}(x),\rho _{x}\right\}_{x\in {\mathcal {X}}}}
of states. Suppose that each state
ρ
x
{\displaystyle \rho _{x}}
has the
following spectral decomposition :
ρ
x
=
∑
y
p
Y
|
X
(
y
|
x
)
|
y
x
⟩
⟨
y
x
|
.
{\displaystyle \rho _{x}=\sum _{y}p_{Y|X}(y|x)\vert y_{x}\rangle \langle y_{x}\vert .}
Consider a density operator
ρ
x
n
{\displaystyle \rho _{x^{n}}}
which is conditional on a classical
sequence
x
n
≡
x
1
⋯
x
n
{\displaystyle x^{n}\equiv x_{1}\cdots x_{n}}
:
ρ
x
n
≡
ρ
x
1
⊗
⋯
⊗
ρ
x
n
.
{\displaystyle \rho _{x^{n}}\equiv \rho _{x_{1}}\otimes \cdots \otimes \rho _{x_{n}}.}
We define the weak conditionally typical subspace as the span of vectors
(conditional on the sequence
x
n
{\displaystyle x^{n}}
) such that the sample conditional entropy
H
¯
(
y
n
|
x
n
)
{\displaystyle {\overline {H}}(y^{n}|x^{n})}
of their classical labels is close
to the true conditional entropy
H
(
Y
|
X
)
{\displaystyle H(Y|X)}
of the distribution
p
Y
|
X
(
y
|
x
)
p
X
(
x
)
{\displaystyle p_{Y|X}(y|x)p_{X}(x)}
:
T
δ
Y
n
|
x
n
≡
span
{
|
y
x
n
n
⟩
:
|
H
¯
(
y
n
|
x
n
)
−
H
(
Y
|
X
)
|
≤
δ
}
,
{\displaystyle T_{\delta }^{Y^{n}|x^{n}}\equiv {\text{span}}\left\{\left\vert y_{x^{n}}^{n}\right\rangle :\left\vert {\overline {H}}(y^{n}|x^{n})-H(Y|X)\right\vert \leq \delta \right\},}
where
H
¯
(
y
n
|
x
n
)
≡
−
1
n
log
(
p
Y
n
|
X
n
(
y
n
|
x
n
)
)
,
{\displaystyle {\overline {H}}(y^{n}|x^{n})\equiv -{\frac {1}{n}}\log \left(p_{Y^{n}|X^{n}}(y^{n}|x^{n})\right),}
H
(
Y
|
X
)
≡
−
∑
x
p
X
(
x
)
∑
y
p
Y
|
X
(
y
|
x
)
log
p
Y
|
X
(
y
|
x
)
.
{\displaystyle H(Y|X)\equiv -\sum _{x}p_{X}(x)\sum _{y}p_{Y|X}(y|x)\log p_{Y|X}(y|x).}
The projector
Π
ρ
x
n
,
δ
{\displaystyle \Pi _{\rho _{x^{n}},\delta }}
onto the weak conditionally typical
subspace of
ρ
x
n
{\displaystyle \rho _{x^{n}}}
is as follows:
Π
ρ
x
n
,
δ
≡
∑
y
n
∈
T
δ
Y
n
|
x
n
|
y
x
n
n
⟩
⟨
y
x
n
n
|
,
{\displaystyle \Pi _{\rho _{x^{n}},\delta }\equiv \sum _{y^{n}\in T_{\delta }^{Y^{n}|x^{n}}}\vert y_{x^{n}}^{n}\rangle \langle y_{x^{n}}^{n}\vert ,}
where we have again overloaded the symbol
T
δ
Y
n
|
x
n
{\displaystyle T_{\delta }^{Y^{n}|x^{n}}}
to refer
to the set of weak conditionally typical sequences:
T
δ
Y
n
|
x
n
≡
{
y
n
:
|
H
¯
(
y
n
|
x
n
)
−
H
(
Y
|
X
)
|
≤
δ
}
.
{\displaystyle T_{\delta }^{Y^{n}|x^{n}}\equiv \left\{y^{n}:\left\vert {\overline {H}}\left(y^{n}|x^{n}\right)-H(Y|X)\right\vert \leq \delta \right\}.}
The three important properties of the weak conditionally typical projector are
as follows:
E
X
n
{
Tr
{
Π
ρ
X
n
,
δ
ρ
X
n
}
}
≥
1
−
ϵ
,
{\displaystyle \mathbb {E} _{X^{n}}\left\{{\text{Tr}}\left\{\Pi _{\rho _{X^{n}},\delta }\rho _{X^{n}}\right\}\right\}\geq 1-\epsilon ,}
Tr
{
Π
ρ
x
n
,
δ
}
≤
2
n
[
H
(
Y
|
X
)
+
δ
]
,
{\displaystyle {\text{Tr}}\left\{\Pi _{\rho _{x^{n}},\delta }\right\}\leq 2^{n\left[H(Y|X)+\delta \right]},}
2
−
n
[
H
(
Y
|
X
)
+
δ
]
Π
ρ
x
n
,
δ
≤
Π
ρ
x
n
,
δ
ρ
x
n
Π
ρ
x
n
,
δ
≤
2
−
n
[
H
(
Y
|
X
)
−
δ
]
Π
ρ
x
n
,
δ
,
{\displaystyle 2^{-n\left[H(Y|X)+\delta \right]}\ \Pi _{\rho _{x^{n}},\delta }\leq \Pi _{\rho _{x^{n}},\delta }\ \rho _{x^{n}}\ \Pi _{\rho _{x^{n}},\delta }\leq 2^{-n\left[H(Y|X)-\delta \right]}\ \Pi _{\rho _{x^{n}},\delta },}
where the first property holds for arbitrary
ϵ
,
δ
>
0
{\displaystyle \epsilon ,\delta >0}
and
sufficiently large
n
{\displaystyle n}
, and the expectation is with respect to the
distribution
p
X
n
(
x
n
)
{\displaystyle p_{X^{n}}(x^{n})}
.