Geometric mean of complex numbers

edit

...

Geometric mean of positive definite matrices

edit

The geometric mean can be extended to positive-definite matrices, and even to accretive matrices, i.e., matrices with a strictly positive Hermitian part.

 
 
 

It is the midpoint on the geodesic connecting   and   on the smooth manifold of positive definite matrices.


A collection of references needed, also exploring different options for how citations work in Wiki. A sentence.[1] Another sentence.[2] A third sentence.[3] A forth sentence.[3]: 233–254  A fifth sentence.[3]: 233-254  A sixth sentence.[3]: chapter 6  A seventh sentence.[4]

  1. ^ Lawson, Jimmie D.; Lim, Yongdo (2001). "The Geometric Mean, Matrices, Metrics, and More". The American Mathematical Monthly. 108 (9): 797–812. doi:10.2307/2695553.
  2. ^ Kubo, Fumio; Ando, Tsuyoshi (1980). "Means of Positive Linear Operators". Mathematische Annalen. 246 (3): 205–224. doi:10.1007/BF01371042.
  3. ^ a b c d Bhatia, Rajendra (2007). Positive definite matrices. Princeton University Press. ISBN 978-0-691-12918-1.
  4. ^ Drury, Stephen (2015). "Principal powers of matrices with positive definite real part". Linear and Multilinear Algebra. 63 (2): 296–301. doi:10.1080/03081087.2013.865732.