Desulfobulbus propionicus | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | D. propionicus
|
Binomial name | |
Desulfobulbus propionicus Pagani et al. 2011[1]
| |
Type strain | |
1pr3T (DSM 2032, ATCC 33891, VKM B-1956) |
Desulfobulbus propionicus is a Gram-negative, anaerobic chemoorganotroph.[2][1] Three separate strains have been identified: 1pr3T, 2pr4, and 3pr10.[2] Is the first pure culture example of disproportionate elements sulfur to sulfate and sulfide.[3] Desulfibulbus propionicus has the potential to produce free energy and chemical products.[4]
Discovery
editDesulfobulbus propionicus was discovered in 1982 by Friedrich Widdel and Norbert Pfenning.[2] Desulfobulbus propionicus was isolated from samples taken from anaerobic mud in a village ditch, pond, and marine mud flat in Germany.[2] All three strains were isolated using the agar shake dilution method on a basal medium with added sulfate, mineral salts, iron, trace elements, bicarbonate, sulfide, and seven vitamins.[2]
Strain | Geographical Location[2] | Habitat Type[2] |
---|---|---|
1pr3T | Lindhort, Germany | Freshwater ditch mud |
2pr4 | Hannover, Germany | Freshwater pond mud |
3pr10 | Jadebusen, Germany (North Sea) | Marine mud flat |
Etiology
editThe genus Desulfobulbus can be derived from the latin words -de meaning from, -sulfo meaning sulfur, and -bulbus meaning onion shaped literally meaning onion-shaped sulfate reducer.[2] The species name propionicus is derived from the organisms electron donor propionate.[2]
Taxonomic and Phylogenetic Description
editThe Desulfobulbus propionicus species possesses three strains: 1pr3T, 2pr4, and 3pr10.[2] Similarly, all three strains are Gram-negative, sulfur-reducers with the ability to grow exclusively on lactate or pyruvate without any external electron or carbon sources.[2] What separates 1pr3T from its sister strains is its ability to reduce sulfite and thiosulfate to hydrogen sulfide (H2S); reduce nitrate to ammonia; lastly, its presence of cytochrome types b- and c-.[2] Furthermore, strain 1pr3T differentiated from the others in shape (1pr3T possesses pointed ends compared to ovoid or ellipsoidal shaped ends), motility (1pr3T lacks motility, whereas the others possess flagella), and the presence of fimbriae (2pr4 and 3pr10 strains do not).[2]
In terms of the Desulfobulbus genus, Desulfobulbus propionicus’s most closely related species is Desulfobulbus elongatus with an identity of 96.9%, followed by Desulfobulbus rhabdoformis, and then Desulfobulbus mediterraneus and Desulfobulbus japonicas with equal relation respective to the phylogenetic tree constructed using 16S rRNA sequences.[1]
Characterization
editMorphology
editDesulfobulbus propionicus is a Gram-negative, ellipsoidal to lemon-shaped bacteria, with an average length of 1.0 to 1.3μm and a width of 1.8 to 2.0μm.[1] D. propionicus functions as an anaerobic chemoorganotroph.[1] The three strains differ in shape, motility, and presence of fimbriae.[2]
Strain | Shape | Motility | Fimbriae |
---|---|---|---|
1pr3T | Lemon-shaped | Non-motile | + |
2pr4 | Ovoid | Single polar flagella | - |
3pr10 | Ellipsoidal | Single polar flagella | - |
Metabolism
editDesulfobulbus propionicus is an anaerobic chemoorganotroph.[1] D. propionicus uses the methylmalony-CoA pathway to ferment 3 moles of pyruvate to 2 moles of acetate and 1 mole of propionate.[1] Desulfobulbus propionicus utilizes propionate, lactate, pyruvate, and alcohols from the environment as not only electron sources, but for carbon sources as well.[2] Hydrogen gas (H2) is only utilized as an electron donor in the presence of carbon dioxide and acetate.[2] As assumed by its name, Desulfobulbus propionicus reduces sulfate, sulfite, and thiosulfate to hydrogen sulfide (H2S), but does not reduce elemental sulfur, malate, and fumarate.[2] When sulfate is absent ethanol is fermented to propionate and acetate.[1] In the absence of an electron acceptor, D. propionicus produces sulfate and sulfide from elemental sulfur and water.[3] Also, Desulfobulbus propionicus strains 1pr3T and 3pr10 can only grow in defined minimal media with the addition of a vitamin 4-aminobenzoic acid, whereas strain 2pr4 does not show this additional requirement.[2][1] Furthermore, the 2pr4 strain is the only of the three to show growth with butyrate as an electron donor and carbon source, however, the growth is slow compared to other substrates.[2]
Genome
editOf the three strains within Desulfobulbus propionicus, 1pr3T is the only to have its genome completely sequenced.[1] It was sequenced in 2011 by Pagani et al.[1] Strain 1pr3T was found to encompass a genome size of 3,851,869 bp, with a G-C content of 58.93%.[1] Pagani et al. predicted 3,408 genes in the genome of 1pr3T, with 3,351 genes that encode proteins.[1] The genome contains 57 RNA genes and two rRNA operons.[1] Furthermore, there is 68 pseudo genes which makes up 2.0% of the total genome size.[1]
Ecology
editDesulfobulbus propionicus inhabits anaerobic freshwaters and marine sediments.[1] Among the three strains, they differ in: temperature ranges, optimal temperature, pH range, optimal pH, and NaCl concentration requirements.[2][1]
Strain | Temperate Range (oC)[2] | Temperature Optimum (oC)[2] | pH Range[2] | pH Optimum[2] | NaCl Concentration (g/l)[2] |
---|---|---|---|---|---|
1pr3T | 10 - 43 | 39 | 6.0 - 8.6 | 7.2 | <15 |
2pr4 | 10 - 36 | 30 | 6.6 - 8.1 | 7.2 | <15 |
3pr10 | 15 - 36 | 29 | 6.6 - 8.1 | 7.4 | >15 |
Application
editDesulfobulbus propionicus can serve as a biocatalyst in microbial electrosynthesis.[4] Microbial electrosynthesis is the usage of electrons by microorganism to reduce carbon dioxide to organic molecules.[4] Desulfobulbus propionicus, when present at the anode, oxidizes elemental sulfur to sulfate, which creates free electrons in the process.[4] The free electrons flow to the organism located at the cathode.[4] The microbe present at the cathode utilizes the electron energy transferred from Desulfobulbus propionicus to create organic matter (e.g. acetate) by reducing carbon dioxide.[4] The use of microbial electrosynthesis has potential to aid in the production and waste maintenance of industrial chemicals and energy production.[4]
References
edit- ^ a b c d e f g h i j k l m n o p q Pagani, Ioanna; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Chertkov, Olga; Davenport, Karen; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Detter, John C.; Brambilla, Evelyne; Kannan, K. Palani; Ngatchou Djao, Olivier D.; Rohde, Manfred; Pukall, Rüdiger; Spring, Stefan; Göker, Markus; Sikorski, Johannes; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter (2011). "Complete genome sequence of Desulfobulbus propionicus type strain (1pr3T)". Standards in Genomic Sciences. 4 (1): 100–110.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y Widdel, F.; Pfenning, N. (1982). "Studies on Dissimilatory Sulfate-Reducing Bacteria that Decompose Fatty Acids II. Incomplete Oxidation of Propionate byDesulfobulbuspropionicusgen. nov., sp. nov". Arch Microbiol. 131 (4): 360–365. doi:10.1007/BF00411187.
- ^ a b Lovely, Derek R.; Phillips, Elizabeth J. P. (1994). "Novel processes for anae- robic sulfate production from elemental sulfur by sulfate-reducing bacteria". Lovley DR, Phillips EJP. Novel Processes for Anaerobic Sulfate Production from Elemental Sulfur by Sulfate-Reducing Bacteria. Applied and Environmental Microbiology. 1994;60(7):2394-2399. 60 (7): 2394–2399. PMC 201662.
- ^ a b c d e f g Gong, Yanming; Ebrahim, Ali; Feist, Adam M.; Embree, Mallory; Zhang, Tian; Lovely, Derek; Zengler, Karsten (2013). "Sulfide-Driven Microbial Electrosynthesis". Environmental Science & Technology 47 (1): 568–573. doi:10.1021/es303837j.
External links
editFurther reading
edit- Holmes, D. E.; Bond, D. R.; Lovley, D. R. (2004). "Electron Transfer by Desulfobulbus propionicus to Fe(III) and Graphite Electrodes". Applied and Environmental Microbiology. 70 (2): 1234–1237. doi:10.1128/AEM.70.2.1234-1237.2004. ISSN 0099-2240.
- Laanbroek, Hendrikus J.; Abee, Tjakko; Voogd, Irma L. (1982). "Alcohol conversion by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen". Archives of Microbiology. 133 (3): 178–184. doi:10.1007/BF00414998. ISSN 0302-8933.
- Anandkumar, B.; George, R. P.; Maruthamuthu, S.; Palaniswamy, N.; Dayal, R. K. (2012). "Corrosion behavior of SRB Desulfobulbus propionicus isolated from an Indian petroleum refinery on mild steel". Materials and Corrosion. 63 (4): 355–362. doi:10.1002/maco.201005883. ISSN 0947-5117.
- Kremer, D.R.; Hansen, T.A. (1988). "Pathway of propionate degradation inDesulfobulbus propionicus". FEMS Microbiology Letters. 49 (2): 273–277. doi:10.1111/j.1574-6968.1988.tb02729.x. ISSN 0378-1097.
- Benoit, J. M.; Gilmour, C. G.; Mason, R. P. (February 2001). "The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures of Desulfobulbus propionicus (1pr3)". Environmental Science and Technology. 35: 127–135. doi:10.1021/es001415n.</ref> me=49|issue=2|year=1988|pages=273–277|issn=0378-1097|doi=10.1111/j.1574-6968.1988.tb02729.x}}
- Moreau, J. W.; Gionfriddo, C. M.; Krabbenhoft, D. P.; Ogorek, J. M.; DeWild, J. F.; Aiken, G. R.; Roden, E. E. (2015). "The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3". frontiers in Microbiology. 6: 1–15. doi:10.3389/fmicb.2015.01389.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Mehrotra, A. S.; Horne, A. J.; Sedlak, D. L. (2003). "Reductionof Net Mercury MethylationbyIronin Desulfobulbus propionicus (1pr3) Cultures: Implications for EngineeredWetlands". Environmental Science and Technology. 37 (13): 3018–3023. doi:10.1021/es0262838.