An Error has occurred retrieving Wikidata item for infobox
Zinc finger protein 684 is a protein that in humans is encoded by the ZNF684 gene.[1]
Gene
editThe zinc finger protein 684 is also known as the Kruppel-associated box protein.[2] Within humans, the ZNF684 gene is found on the plus strand at 1q34.2, spanning 16,594 nucleotides from 40,548,167 to 40,531,573.[3][4]
Transcript
editCurrently, there is one transcript variant encoding ZNF684.[1] The transcript variant has five identified exon regions within ZNF684 and spans 2,019 base pairs (bp).[3]
Protein
editThe ZNF684 protein in humans is 378 amino acids long[2]. Human ZNF684 has a molecular weight of 32,945 Da and basal isoelectric point of 9.06.[5] The ZNF684 protein contains the Kruppel-associated box A (KRAB-A) domain, which functions as a transcriptional repressor.[2][6] Within the ZNF684 protein, there are 8 C2H2 zinc finger structural motif (zf-C2H2) domain, which are known to bind either zinc ions or nucleic acid.[2][7][8] Within those domains, cystine and histidine are the primary amino acids involved in zinc ion (Zn2+) or nucleic acid binding.[7] The human ZNF684 protein is rich in lysine and histidine, and poor in alanine.[9] Predicted secondary structures of ZNF684 demonstrate a variable number of alpha helices, beta sheets, helical turns, and coils throughout the protein.[10]
Regulation
editGene
editTissue Distribution
editIn terms of gene expression, ZNF684 has ubiquitous expression in all human tissues.[1] Microarray data illustrates higher expression of ZNF684 within the liver.[1][11] This is further supported by data which depicts a decrease in ZNF684 expression in liver cells within individuals with liver cancer.[12] There was also higher expressions of ZNF684 within the kidney compared to other tissues.[1][11] Evidence of decreased ZNF684 expression is observed with individuals with renal cancer.[13]
Within fetuses, the ubiquitous expression of ZNF684 gene is present in all tissues throughout the gestational period of 10 to 20 weeks.[1] There is a higher level of expression of ZNF684 in the heart at 20 weeks of gestation, and a decreased level of expression in kidneys at 20 week of gestation.[1]
Transcript
editUsing RNAfold, minimum free energy structures were created based on the extended 5' and 3' untranslated region (UTR) in the human sequence (Figure 1-2).
Protein
editIt is predicted that ZNF684 localizes within the nucleus, which aligns with the protein's known functions as a transcription factor.[14] It has also been predicted to localize within the cytoplasm.[14]
Homology/ evolution
editHomologs of the ZNF684 gene have been found across eukaryotes and bacteria species.[15] Strict orthologs were only found within placental mammals. The gene is also closely related to the paralog ZFP25 in humans.[16] Across the various species in which ZNF684 strict ortholog is present, conservation of C2H2 binding sites and the Kruppel-associated box is apparent (Figure 3-4).[17] The list of the various mammalian placental species are summarized in Table 1 by their median date of divergence from Homo sapiens.
Genus and Species | Common Name | Taxonomic Group | Median Date of Divergence | Accession # | Sequence Length (aa) | Sequence Identity to Human Protein (%) | Sequence Similarity to Human Protein () |
Homo sapiens | Human | Primates | 0.0 | NP_689586.3 | 378 | 100.0 | 100.0 |
Pan troglodytes | Chimpanzee | Primates | 6.4 | XP_513358.3 | 378 | 98.9 | 98.9 |
Macaca mulatta | Rhesus monkey | Primates | 28.8 | XP_028691269.1 | 398 | 77.3 | 78.0 |
Tupaia chinensis | Chinese treeshrew | Scandentia | 85.0 | XP_006164992.2 | 401 | 75.9 | 82.6 |
Heterocephalus glaber | Naked mole-rat | Rodentia | 87.0 | XP_021105597.1 | 380 | 79.5 | 88.7 |
Castor canadensis | American beaver | Rodentia | 87.0 | XP_020027280.1 | 352 | 77.3 | 78.0 |
Oryctolagus cuniculus | Rabbit | Lagomorpha | 87.0 | XP_051713856.1 | 405 | 48.2 | 61.0 |
Ochotona curzoniae | Black-lipped pika | Lagomorpha | 87.0 | XP_040830236.1 | 407 | 45.5 | 61.2 |
Bos taurus | Cattle | Artiodactyla | 94.0 | XP_024845985.1 | 382 | 81.2 | 88.7 |
Balaenoptera ricei | Rices whale | Artiodactyla | 94.0 | XP_059753474.1 | 380 | 85.0 | 90.5 |
Ursus arctos | Brown bear | Carnivora | 94.0 | XP_057161231.1 | 380 | 86.3 | 90.8 |
Acinonyx jubatus | Cheetah | Carnivora | 94.0 | XP_053068190.1 | 380 | 82.9 | 89.2 |
Diceros bicornis minor | South-central black rhinoceros | Perissodactyla | 94.0 | XP_058409785.1 | 380 | 86.8 | 91.8 |
Pteropus alecto | Large flying fox | Chiroptera | 94.0 | XP_023377766.1 | 378 | 84.2 | 89.5 |
Myotis daubentonii | Daubentons bat | Chiroptera | 94.0 | XP_059545721.1 | 394 | 79.0 | 84.8 |
Condylura cristata | Star-nosed mole | Eulipotyphla | 94.0 | XP_012577988.1 | 386 | 80.3 | 87.6 |
Manis pentadactyla | Chinese pango | Pholidota | 94.0 | XP_057356056.1 | 409 | 74.3 | 79.2 |
Trichechus manatus | Florida manatee | Afrotheria | 99.0 | XP_023582938.1 | 380 | 82.1 | 88.9 |
Elephas maximus indicus | Elephant | Afrotheria | 99.0 | XP_049734871.1 | 392 | 76.7 | 84.8 |
Choloepus didactylus | Two-toed sloth | Pilosa | 99.0 | XP_037683504.1 | 399 | 79.2 | 83.2 |
Interacting Proteins
editMultiple interactions were detected between ZNF684 and other proteins.[18] TRIM28 is a transcription factor co-repressor that interacts with the KRAB domain.[19] TRIM28 recruits components for histone methylation and histone deacetylation, leading to changes in chromatin structure that repress gene expression.[20]
Functions
editZNF684 physically interacts with mRNA export factors and directly binds to RNA.[21]
References
edit- ^ a b c d e f g "ZNF684 zinc finger protein 684 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2023-12-14.
- ^ a b c d "zinc finger protein 684 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2023-12-14.
- ^ a b "Homo sapiens zinc finger protein 684 (ZNF684), mRNA". 2022-12-24.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "Gene: ZNF684 (ENSG00000117010) - Summary - Homo_sapiens - Ensembl genome browser 110". useast.ensembl.org. Retrieved 2023-12-14.
- ^ www.phosphosite.org https://www.phosphosite.org/overviewExecuteAction?id=3509849. Retrieved 2023-12-14.
{{cite web}}
: Missing or empty|title=
(help) - ^ Urrutia, Raul (2003). "KRAB-containing zinc-finger repressor proteins". Genome Biology. 4 (10): 231. ISSN 1465-6906. PMID 14519192.
- ^ a b Lupo, Angelo; Cesaro, Elena; Montano, Giorgia; Zurlo, Diana; Izzo, Paola; Costanzo, Paola (2013-6). "KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions". Current Genomics. 14 (4): 268–278. doi:10.2174/13892029113149990002. ISSN 1389-2029. PMC 3731817. PMID 24294107.
{{cite journal}}
: Check date values in:|date=
(help) - ^ "UniProt". www.uniprot.org. Retrieved 2023-12-14.
- ^ "SAPS < Sequence Statistics < EMBL-EBI". www.ebi.ac.uk. Retrieved 2023-12-14.
- ^ Chou, Peter Y.; Fasman, Gerald D. (1979-01), Meister, Alton (ed.), "Prediction of the Secondary Structure of Proteins from their Amino Acid Sequence", Advances in Enzymology - and Related Areas of Molecular Biology, vol. 47 (1 ed.), Wiley, pp. 45–148, doi:10.1002/9780470122921.ch2, ISBN 978-0-471-04116-0, retrieved 2023-12-14
{{citation}}
: Check date values in:|date=
(help) - ^ a b "ZNF684 protein expression summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2023-12-14.
- ^ "Expression of ZNF684 in liver cancer - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2023-12-14.
- ^ "Expression of ZNF684 in renal cancer - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2023-12-14.
- ^ a b "Subcellular - ZNF684 - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2023-12-14.
- ^ "Nucleotide BLAST: Search nucleotide databases using a nucleotide query". blast.ncbi.nlm.nih.gov. Retrieved 2023-12-14.
- ^ "Gene: ZNF684 (ENSG00000117010) - Paralogues - Homo_sapiens - Ensembl genome browser 110". useast.ensembl.org. Retrieved 2023-12-15.
- ^ "Clustal Omega < Multiple Sequence Alignment < EMBL-EBI". www.ebi.ac.uk. Retrieved 2023-12-15.
- ^ "ZNF684 protein (human) - STRING interaction network". string-db.org. Retrieved 2023-12-15.
- ^ "Homo sapiens tripartite motif containing 28 (TRIM28), mRNA". 2023-11-21.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "UniProt". www.uniprot.org. Retrieved 2023-12-15.
- ^ Nitoiu, Alexandra; Nabeel-Shah, Syed; Farhangmehr, Shaghayegh; Pu, Shuye; Braunschweig, Ulrich; Blencowe, Benjamin J.; Greenblatt, Jack F. (2021-10-01), KRAB Zinc Finger protein Znf684 interacts with Nxf1 to regulate mRNA export, doi:10.1101/2021.09.29.462476, retrieved 2023-12-15