electric constant
ϵ
0
F
/
m
{\displaystyle \epsilon _{0}F/m}
electrostatic constant
k
=
1
/
(
4
π
ϵ
0
)
m
/
F
{\displaystyle k=1/(4\pi \epsilon _{0})m/F}
Coulomb's law
F
=
k
|
q
1
|
|
q
2
|
/
r
2
{\displaystyle F=k|q_{1}||q_{2}|/r^{2}}
elementary charge
e
{\displaystyle e}
in Coloumbs
electric charge
q
=
n
e
{\displaystyle q=ne}
for integer n
conservation of charge
Δ
e
=
0
{\displaystyle \Delta e=0}
test charge
q
0
{\displaystyle q_{0}}
electric field
E
=
F
/
q
0
{\displaystyle \mathbf {E} =\mathbf {F} /q_{0}}
electric field of a point charge
E
q
=
F
{\displaystyle \mathbf {E} q=\mathbf {F} }
electric field lines
end at a negative charge
r hat?
r
^
{\displaystyle {\hat {r}}}
electric field of a point charge
E
=
F
/
q
0
=
(
1
/
(
ϵ
0
4
π
)
)
q
/
r
2
r
^
{\displaystyle \mathbf {E} =\mathbf {F} /q_{0}=(1/(\epsilon _{0}4\pi ))q/r^{2}{\hat {r}}}
electric dipole moment
p
{\displaystyle \mathbf {p} }
?
z
{\displaystyle z}
electric field of a dipole moment
E
=
(
1
/
(
ϵ
0
2
π
)
)
(
p
/
z
3
)
{\displaystyle E=(1/(\epsilon _{0}2\pi ))(p/z^{3})}
electric field of a charged ring
E
=
q
z
/
(
ϵ
0
4
π
(
z
2
+
R
2
)
(
3
/
2
)
{\displaystyle E=qz/(\epsilon _{0}4\pi (z^{2}+R^{2})^{(}3/2)}
surface charge density
σ
=
Q
/
A
{\displaystyle \sigma =Q/A}
electric field of a charged disk
E
=
(
σ
/
ϵ
0
2
)
(
1
−
z
/
z
2
+
R
2
)
{\displaystyle E=(\sigma /\epsilon _{0}2)(1-z/{\sqrt {z^{2}+R^{2}}})}
torque on a dipole
τ
=
p
×
E
{\displaystyle \mathbf {\tau } =\mathbf {p} \times \mathbf {E} }
potential energy of a dipole
U
=
−
p
⋅
E
{\displaystyle U=-\mathbf {p} \cdot \mathbf {E} }
work done on a dipole
W
a
=
−
W
=
Δ
U
{\displaystyle W_{a}=-W=\Delta U}
Gaussian surface
?
flux
?
?
A
{\displaystyle \mathbf {A} }
electric flux
Φ
=
∮
E
⋅
d
A
{\displaystyle \Phi =\oint \mathbf {E} \cdot d\mathbf {A} }
Gauss' law
q
e
n
c
=
ϵ
0
Φ
{\displaystyle q_{enc}=\epsilon _{0}\Phi }
Gauss' law
q
e
n
c
=
ϵ
0
∮
E
⋅
d
A
{\displaystyle q_{enc}=\epsilon _{0}\oint \mathbf {E} \cdot d\mathbf {A} }
volume charge density
ρ
=
Q
/
V
{\displaystyle \rho =Q/V}
linear charge density
λ
=
Q
/
L
{\displaystyle \lambda =Q/L}
acceleration due to charge
a
=
q
E
/
m
{\displaystyle a=qE/m}
conducting surface
E
=
σ
/
ϵ
0
{\displaystyle E=\sigma /\epsilon _{0}}
electric field of a line of charge
E
=
λ
/
ϵ
0
2
π
r
{\displaystyle E=\lambda /\epsilon _{0}2\pi r}
non-conducting sheet of charge
E
=
σ
/
ϵ
0
2
{\displaystyle E=\sigma /\epsilon _{0}2}
electric field outside spherical shell r>=R
E
=
q
/
ϵ
0
4
π
r
2
{\displaystyle E=q/\epsilon _{0}4\pi r^{2}}
electric field inside spherical shell r<R
E
=
0
{\displaystyle E=0}
electric field of uniform charge r<=R
E
=
q
r
/
ϵ
0
4
π
R
3
{\displaystyle E=qr/\epsilon _{0}4\pi R^{3}}
electric potential energy
U
{\displaystyle U}
Work done by electric potential energy
Δ
U
=
−
W
{\displaystyle \Delta U=-W}
finite potential energy of the system
U
−
W
∞
{\displaystyle U-W_{\infty }}
electric potential
V
=
U
/
q
{\displaystyle V=U/q}
electric potential difference
Δ
V
=
Δ
U
/
q
=
−
W
/
q
{\displaystyle \Delta V=\Delta U/q=-W/q}
potential defined
V
=
−
W
∞
/
q
{\displaystyle V=-W_{\infty }/q}
potential from the electric field
Δ
V
=
−
∫
i
f
E
⋅
d
s
{\displaystyle \Delta V=-\int _{i}^{f}\mathbf {E} \cdot d\mathbf {s} }
potential of a point charge
V
=
q
/
ϵ
0
4
π
r
{\displaystyle V=q/\epsilon _{0}4\pi r}
potential of a point charge group
V
=
Σ
V
i
=
(
1
/
ϵ
0
4
π
)
Σ
q
i
/
r
i
{\displaystyle V=\Sigma V_{i}=(1/\epsilon _{0}4\pi )\Sigma q_{i}/r_{i}}
potential of a dipole
V
=
p
cos
θ
/
ϵ
0
4
π
r
2
{\displaystyle V=p\cos \theta /\epsilon _{0}4\pi r^{2}}
potential of continuous charge
V
=
∫
d
V
=
(
1
/
ϵ
0
4
π
)
∫
d
q
/
r
{\displaystyle V=\int dV=(1/\epsilon _{0}4\pi )\int dq/r}
field from potential
E
=
∇
V
{\displaystyle \mathbf {E} =\nabla V}
potential of a pair of point charges
U
=
W
=
q
2
V
=
q
1
q
2
/
ϵ
0
4
π
r
{\displaystyle U=W=q_{2}V=q_{1}q_{2}/\epsilon _{0}4\pi r}
capacitance
C
=
q
/
V
{\displaystyle C=q/V}
parallel plate capacitor
C
=
ϵ
0
A
/
d
{\displaystyle C=\epsilon _{0}A/d}
cylindrical capacitor
C
=
ϵ
0
2
π
L
/
ln
(
b
/
a
)
{\displaystyle C=\epsilon _{0}2\pi L/\ln(b/a)}
spherical capacitor
C
=
ϵ
0
4
π
b
a
/
(
b
−
a
)
{\displaystyle C=\epsilon _{0}4\pi ba/(b-a)}
isolated spherical capacitor
C
=
ϵ
0
4
π
R
{\displaystyle C=\epsilon _{0}4\pi R}
parallel capacitors
C
e
q
=
Σ
C
i
{\displaystyle C_{eq}=\Sigma C_{i}}
series capacitors
1
/
C
e
q
=
Σ
1
/
C
i
{\displaystyle 1/C_{eq}=\Sigma 1/C_{i}}
potential energy stored in a capacitor
U
=
q
2
/
2
C
=
C
V
2
/
2
{\displaystyle U=q^{2}/2C=CV^{2}/2}
energy density
u
=
ϵ
0
E
2
/
2
{\displaystyle u=\epsilon _{0}E^{2}/2}
dielectric constant
κ
≥
1
{\displaystyle \kappa \geq 1}
dimensions of capacitance
C
=
ϵ
0
L
{\displaystyle C=\epsilon _{0}{\mathcal {L}}}
dielectric
ϵ
0
→
ϵ
0
κ
{\displaystyle \epsilon _{0}\to \epsilon _{0}\kappa }
Gauss' law with dialectric
q
=
ϵ
0
∮
κ
E
⋅
d
A
{\displaystyle q=\epsilon _{0}\oint \kappa \mathbf {E} \cdot d\mathbf {A} }
electric displacement
D
=
ϵ
0
κ
E
{\displaystyle \mathbf {D} =\epsilon _{0}\kappa \mathbf {E} }
current
i
=
d
q
/
d
t
{\displaystyle i=dq/dt}
charge density
J
=
i
/
A
{\displaystyle \mathbf {J} =i/A}
?
i
=
∫
J
d
A
{\displaystyle i=\int JdA}
drift speed
v
d
{\displaystyle \mathbf {v} _{d}}
?
J
=
n
e
v
d
/
m
3
{\displaystyle \mathbf {J} =ne\mathbf {v} _{d}/m^{3}}
resistance
R
=
V
/
i
{\displaystyle R=V/i}
resistivity in ohm-meters
ρ
=
E
/
J
{\displaystyle \rho =\mathbf {E} /\mathbf {J} }
conductivity
σ
=
J
/
E
=
1
/
ρ
{\displaystyle \sigma =\mathbf {J} /\mathbf {E} =1/\rho }
?
R
/
ρ
=
L
/
A
{\displaystyle R/\rho =L/A}
variation of resistivity with temperature
ρ
−
ρ
0
=
ρ
0
α
(
T
−
T
0
)
{\displaystyle \rho -\rho _{0}=\rho _{0}\alpha (T-T_{0})}
temperature coefficient of resistivity
α
{\displaystyle \alpha }
Ohm's law
V
=
i
R
{\displaystyle V=iR}
electrical power
P
=
i
V
{\displaystyle P=iV}
resistive dissipation
P
=
i
2
R
=
V
2
/
R
{\displaystyle P=i^{2}R=V^{2}/R}
emf
E
=
d
W
/
d
q
=
i
R
{\displaystyle {\mathcal {E}}=dW/dq=iR}
rules for calculating emf
loop, resistance, emf
internal resistance
i
=
E
/
(
R
+
r
)
{\displaystyle i={\mathcal {E}}/(R+r)}
resistors in series
R
e
q
=
Σ
R
i
{\displaystyle R_{eq}=\Sigma R_{i}}
resistors in parallel
1
/
R
e
q
=
1
/
Σ
R
i
{\displaystyle 1/R_{eq}=1/\Sigma R_{i}}
potential difference across a real battery
p
=
E
−
i
R
{\displaystyle p={\mathcal {E}}-iR}
power of an emf device
P
e
m
f
=
i
E
{\displaystyle P_{emf}=i{\mathcal {E}}}
Kirchoff's junction rule
i
i
n
=
i
o
u
t
{\displaystyle i_{in}=i_{out}}
RC charging a capacitor
q
=
C
E
(
1
−
e
−
t
/
R
C
{\displaystyle q=C{\mathcal {E}}(1-e^{-t/RC}}
RC charging a capacitor
i
=
(
E
/
R
)
e
−
t
/
R
C
{\displaystyle i=({\mathcal {E}}/R)e^{-t/RC}}
RC charging a capacitor
V
C
=
E
(
1
−
e
−
t
/
R
C
{\displaystyle V_{C}={\mathcal {E}}(1-e^{-t/RC}}
capacitive time constant
τ
=
R
C
{\displaystyle \tau =RC}
magnetic field
F
B
=
q
v
×
B
{\displaystyle \mathbf {F} _{B}=q\mathbf {v} \times \mathbf {B} }
Hall effect
n
=
B
i
/
V
l
e
{\displaystyle n=Bi/Vle}
circulating charged particle
|
q
|
v
B
=
m
v
2
/
r
{\displaystyle |q|vB=mv^{2}/r}
cyclotron resonance condition
f
=
f
o
s
c
{\displaystyle f=f_{osc}}
force on a current
F
B
=
i
L
×
B
{\displaystyle \mathbf {F} _{B}=i\mathbf {L} \times \mathbf {B} }
magnetic moment
μ
=
N
i
A
{\displaystyle \mu =NiA}
magnetic dipole torque
τ
=
μ
×
B
{\displaystyle \mathbf {\tau } =\mathbf {\mu } \times \mathbf {B} }
magnetic potential energy
U
(
θ
)
=
−
μ
⋅
B
{\displaystyle U(\theta )=-\mathbf {\mu } \cdot \mathbf {B} }
magnetism constant
μ
0
{\displaystyle \mu _{0}}
, in Tm/A
Biot-Savart law
d
B
=
(
μ
0
/
4
π
)
(
i
d
s
×
r
^
/
r
2
)
{\displaystyle d\mathbf {B} =(\mu _{0}/4\pi )(id\mathbf {s} \times {\hat {r}}/r^{2})}
magnetic field due to a long straight wire
B
=
μ
0
i
/
2
π
R
{\displaystyle B=\mu _{0}i/2\pi R}
magnetic field due to a semi-infinite straight wire
B
=
μ
0
i
/
4
π
R
{\displaystyle B=\mu _{0}i/4\pi R}
magnetic field at the center of a circular arc
B
=
μ
0
i
ϕ
/
4
π
R
{\displaystyle B=\mu _{0}i\phi /4\pi R}
Ampere's law
∮
B
⋅
d
s
=
μ
0
i
e
n
c
{\displaystyle \oint \mathbf {B} \cdot d\mathbf {s} =\mu _{0}i_{enc}}
ideal solenoid
B
=
μ
0
i
n
{\displaystyle B=\mu _{0}in}
toroid
B
=
μ
0
i
N
/
2
π
r
{\displaystyle B=\mu _{0}iN/2\pi r}
current carrying coil
B
=
μ
0
μ
/
2
π
z
3
{\displaystyle \mathbf {B} =\mu _{0}\mathbf {\mu } /2\pi z^{3}}
magnetic flux through A
Φ
B
=
∫
B
⋅
d
A
{\displaystyle \Phi _{B}=\int \mathbf {B} \cdot d\mathbf {A} }
?
Φ
B
=
B
A
{\displaystyle \Phi _{B}=BA}
Faraday's law
E
=
d
Φ
B
/
d
t
{\displaystyle {\mathcal {E}}=d\Phi _{B}/dt}
Lenz's law
?
{\displaystyle ?}
Faraday's law
∮
E
⋅
d
s
=
−
d
Φ
B
/
d
t
{\displaystyle \oint \mathbf {E} \cdot d\mathbf {s} =-d\Phi _{B}/dt}
inductance
L
=
N
Φ
B
/
i
{\displaystyle L=N\Phi _{B}/i}
solenoid
L
/
l
=
μ
0
n
2
A
{\displaystyle L/l=\mu _{0}n^{2}A}
self-induced emf
E
L
=
−
L
d
i
/
d
t
{\displaystyle {\mathcal {E}}_{L}=-Ldi/dt}
RL circuit
L
d
i
/
d
t
+
R
i
=
E
{\displaystyle Ldi/dt+Ri={\mathcal {E}}}
RL circuit rise of current
i
=
E
/
R
(
1
−
e
−
t
/
τ
L
)
{\displaystyle i={\mathcal {E}}/R(1-e^{-t/\tau _{L}})}
RL circuit time constant
τ
L
=
L
/
R
{\displaystyle \tau _{L}=L/R}
RL circuit decay of current
i
=
E
e
−
t
/
τ
L
/
R
=
i
0
e
−
t
/
τ
L
{\displaystyle i={\mathcal {E}}e^{-t/\tau _{L}}/R=i_{0}e^{-t/\tau _{L}}}
magnetic energy
U
B
=
L
i
2
/
2
{\displaystyle U_{B}=Li^{2}/2}
magnetic energy density
u
B
=
B
2
/
2
μ
0
{\displaystyle u_{B}=B^{2}/2\mu _{0}}
mutual induction
E
1
=
−
M
d
i
2
/
d
t
,
E
2
=
−
M
d
i
1
/
d
t
{\displaystyle {\mathcal {E}}_{1}=-Mdi_{2}/dt,{\mathcal {E}}_{2}=-Mdi_{1}/dt}
LC circuit
ω
=
1
/
L
C
{\displaystyle \omega =1/{\sqrt {LC}}}
LC oscillations
L
d
2
q
/
d
t
2
+
q
/
C
=
0
{\displaystyle Ld^{2}q/dt^{2}+q/C=0}
LC charge
q
=
Q
c
o
s
(
ω
t
+
ϕ
)
{\displaystyle q=Qcos(\omega t+\phi )}
LC current
i
=
−
ω
Q
s
i
n
(
ω
t
+
ϕ
)
{\displaystyle i=-\omega Qsin(\omega t+\phi )}
LC electrical energy
U
E
=
q
2
/
2
C
=
Q
2
c
o
s
2
(
ω
t
+
ϕ
)
/
2
C
{\displaystyle U_{E}=q^{2}/2C=Q^{2}cos^{2}(\omega t+\phi )/2C}
[[]]
U
B
=
Q
2
s
i
n
2
(
ω
t
+
ϕ
)
/
2
C
{\displaystyle U_{B}=Q^{2}sin^{2}(\omega t+\phi )/2C}
RLC circuit ODE
L
d
2
/
q
/
d
t
2
+
R
d
q
/
d
t
+
q
/
C
=
0
{\displaystyle Ld^{2}/q/dt^{2}+Rdq/dt+q/C=0}
RLC circuit ODE solution
q
=
Q
e
T
−
R
t
/
2
L
c
o
s
(
ω
′
t
+
ϕ
)
{\displaystyle q=QeT^{-Rt/2L}cos(\omega 't+\phi )}
resistive load
V
R
=
I
R
R
{\displaystyle V_{R}=I_{R}R}
capacitive reactance
X
C
=
1
/
ω
d
C
{\displaystyle X_{C}=1/\omega _{d}C}
capacitive load
V
C
=
I
C
X
C
{\displaystyle V_{C}=I_{C}X_{C}}
inductive reactance
X
L
=
ω
d
L
{\displaystyle X_{L}=\omega _{d}L}
inductive load
V
L
=
I
L
X
L
{\displaystyle V_{L}=I_{L}X_{L}}
phase constant
t
a
n
ϕ
=
X
L
−
X
C
/
R
{\displaystyle tan\phi =X_{L}-X_{C}/R}
electromagnetic resonance
ω
d
=
ω
=
1
/
L
C
{\displaystyle \omega _{d}=\omega =1/{\sqrt {LC}}}
rms current
I
r
m
s
=
I
/
2
{\displaystyle I_{rms}=I/{\sqrt {2}}}
rms voltage
V
r
m
s
=
V
/
2
{\displaystyle V_{rms}=V/{\sqrt {2}}}
rms emf
E
r
m
s
=
E
m
/
2
{\displaystyle {\mathcal {E}}_{rms}={\mathcal {E}}_{m}/{\sqrt {2}}}
average power
P
a
v
g
=
E
I
r
m
s
c
o
s
ϕ
{\displaystyle P_{avg}={\mathcal {E}}I_{rms}cos\phi }
transformation of voltage
V
s
N
p
=
V
p
N
s
{\displaystyle V_{s}N_{p}=V_{p}N_{s}}
transformation of currents
I
s
N
s
=
I
p
N
p
{\displaystyle I_{s}N_{s}=I_{p}N_{p}}
transformer resistance
R
e
q
=
(
N
p
/
N
s
)
2
R
{\displaystyle R_{e}q=(Np/Ns)^{2}R}
Gauss' law for magnetic fields
Φ
B
=
∮
B
⋅
d
A
=
0
{\displaystyle \Phi _{B}=\oint \mathbf {B} \cdot d\mathbf {A} =0}
Maxwell's law of induction
∮
B
/
c
d
o
t
d
s
=
μ
0
ϵ
0
d
Φ
E
/
d
t
{\displaystyle \oint \mathbf {B} /cdotd\mathbf {s} =\mu _{0}\epsilon _{0}d\Phi _{E}/dt}
Ampere-Maxwell law
∮
B
⋅
d
s
=
μ
0
ϵ
0
d
Φ
E
/
d
t
+
μ
0
i
e
n
c
{\displaystyle \oint \mathbf {B} \cdot d\mathbf {s} =\mu _{0}\epsilon _{0}d\Phi _{E}/dt+\mu _{0}i_{enc}}
displacement current
i
d
=
ϵ
0
d
Ψ
E
/
d
t
{\displaystyle i_{d}=\epsilon _{0}d\Psi _{E}/dt}
Ampere-Maxwell law
∮
B
⋅
d
s
=
μ
0
i
d
,
e
n
c
+
μ
0
i
e
n
c
{\displaystyle \oint \mathbf {B} \cdot d\mathbf {s} =\mu _{0}i_{d,enc}+\mu _{0}i_{enc}}
induced magnetic field inside a circular capacitor
B
=
(
μ
0
i
d
/
2
π
R
2
)
r
{\displaystyle B=(\mu _{0}i_{d}/2\pi R^{2})r}
induced magnetic field outside a circular capacitor
B
=
μ
0
i
d
/
2
π
r
r
{\displaystyle B=\mu _{0}i_{d}/2\pi rr}
spin magnetic dipole moment
μ
s
=
−
e
S
/
m
{\displaystyle \mathbf {\mu _{s}} =-e\mathbf {S} /m}
Bohr magneton
μ
B
=
e
h
/
4
π
m
{\displaystyle \mu _{B}=eh/4\pi m}
?
U
=
−
μ
s
⋅
B
e
x
t
=
−
μ
s
,
z
B
e
x
t
{\displaystyle U=-\mathbf {\mu } _{s}\cdot \mathbf {B} _{ext}=-\mu _{s,z}B_{ext}}
orbital magnetic dipole moment
μ
o
r
b
=
−
e
L
o
r
b
/
2
m
{\displaystyle \mathbf {\mu } _{orb}=-e\mathbf {L} _{o}rb/2m}
?
U
=
−
μ
o
r
b
⋅
B
e
x
t
=
−
μ
o
r
b
,
z
B
e
x
t
{\displaystyle U=-\mathbf {\mu } _{orb}\cdot \mathbf {B} _{ext}=-\mu _{orb,z}B_{ext}}