User:Differintegral/perturbation sandbox

Examples

edit

I think this section could use some rewording to make it more readable. In fact, the whole article is repetitive, and could use some rewriting. Additionally, the citation needed on Feynman diagrams being used in other fields should be reworded to reflect the limited use. http://arxiv.org/abs/hep-th/0605061

Examples for the "mathematical description" are: an algebraic equation, a differential equation (e.g., the equations of motion in celestial mechanics or a wave equation), a free energy (in statistical mechanics), a Hamiltonian operator (in quantum mechanics).

Examples for the kind of solution to be found perturbatively: the solution of the equation (e.g., the trajectory of a particle), the statistical average of some physical quantity (e.g., average magnetization), the ground state energy of a quantum mechanical problem.

Examples for the exactly solvable problems to start with: linear equations, including linear equations of motion (harmonic oscillator, linear wave equation), statistical or quantum-mechanical systems of non-interacting particles (or in general, Hamiltonians or free energies containing only terms quadratic in all degrees of freedom).

Examples of "perturbations" to deal with: Nonlinear contributions to the equations of motion, interactions between particles, terms of higher powers in the Hamiltonian/Free Energy.

For physical problems involving interactions between particles, the terms of the perturbation series may be displayed (and manipulated) using Feynman diagrams.


Perturbation orders

edit

The standard exposition of perturbation theory is given in terms of the order to which the perturbation is carried out: first-order perturbation theory or second-order perturbation theory, and whether the perturbed states are degenerate (that is, singular), in which case extra care must be taken, and the theory is slightly more difficult.

This section needs to be expanded to include the standard textbook examples of each of the three expansions.

Planning on looking up stuff in Bender and Orszag in the near future