Spectral function is defined from the imaginary (skew-Hermitian ) part of retarded Green's function
A
(
ω
)
=
−
2
I
m
G
(
ω
+
i
0
+
)
≡
i
(
G
(
ω
+
i
0
+
)
−
G
†
(
ω
+
i
0
+
)
)
{\displaystyle A(\omega )=-2\,\mathrm {Im} G(\omega +i0_{+})\equiv i(G(\omega +i0_{+})-G^{\dagger }(\omega +i0_{+}))}
.
The spectral function contains full information of the Green's function. Both the retarded function and the Matsubara function can be restored from the spectral function,
G
(
ω
+
i
0
+
)
=
∫
−
∞
∞
d
ω
′
2
π
A
(
ω
′
)
ω
+
i
0
+
−
ω
′
{\displaystyle G(\omega +i0_{+})=\int _{-\infty }^{\infty }{\frac {d\omega '}{2\pi }}{\frac {A(\omega ')}{\omega +i0_{+}-\omega '}}}
,
G
(
i
ω
)
=
∫
−
∞
∞
d
ω
′
2
π
A
(
ω
′
)
i
ω
−
ω
′
{\displaystyle G(i\omega )=\int _{-\infty }^{\infty }{\frac {d\omega '}{2\pi }}{\frac {A(\omega ')}{i\omega -\omega '}}}
.
As related by the Kramers-Kronig relation , the real part of G and the spectral function A are of opposite parity.
If (the real part of) G(-ω)=G(ω) is even, then A(-ω)=-A(ω) is odd and
G
(
ω
)
=
∫
0
∞
d
ω
′
2
π
2
ω
′
A
(
ω
′
)
ω
2
−
ω
′
2
{\displaystyle G(\omega )=\int _{0}^{\infty }{\frac {d\omega '}{2\pi }}{\frac {2\omega 'A\left(\omega '\right)}{\omega ^{2}-\omega '^{2}}}}
.
If (the real part of) G(-ω)=-G(ω) is odd, then A(-ω)=A(ω) is even and
G
(
ω
)
=
∫
0
∞
d
ω
′
2
π
2
ω
A
(
ω
′
)
ω
2
−
ω
′
2
{\displaystyle G(\omega )=\int _{0}^{\infty }{\frac {d\omega '}{2\pi }}{\frac {2\omega A\left(\omega '\right)}{\omega ^{2}-\omega '^{2}}}}
.
For diffusive dynamics, the Green's function is given by
G
(
ω
)
=
(
ω
η
−
H
)
−
1
{\displaystyle G(\omega )=(\omega \eta -H)^{-1}}
,
where H is the Hamiltonian governs the diffusion rate, and the metric η is the matter number operator. η is always positive definite for fermion system, but not necessarily for boson system.
The spectral function is therefore
A
(
ω
)
=
−
2
I
m
(
(
ω
+
i
0
+
)
η
−
H
)
−
1
{\displaystyle A(\omega )=-2\,\mathrm {Im} ((\omega +i0_{+})\eta -H)^{-1}}
.
Diagonal Hamiltonian
edit
Consider the Hamiltonian in its diagonal representation,
H
=
d
i
a
g
n
ϵ
n
{\displaystyle H=\mathrm {diag} _{n}\epsilon _{n}}
,
where n labels the energy level
ϵ
n
{\displaystyle \epsilon _{n}}
.
The Green's function is
G
(
ω
)
=
d
i
a
g
n
1
ω
η
n
−
ϵ
n
{\displaystyle G(\omega )=\mathrm {diag} _{n}{\frac {1}{\omega \eta _{n}-\epsilon _{n}}}}
.
The spectral function is
A
(
ω
)
=
d
i
a
g
n
2
π
η
n
δ
(
ω
−
η
n
ϵ
n
)
{\displaystyle A(\omega )=\mathrm {diag} _{n}\,2\pi \eta _{n}\delta (\omega -\eta _{n}\epsilon _{n})}
.
The SU(2) Hilbert space is a dim-2 space equipped with unitary metric
η
=
σ
0
{\displaystyle \eta =\sigma _{0}}
, any Hermitian operator acting on which is a SU(2) Hamiltonian. The Hamiltonian can be represented by the 2×2 matrix, which can be in general decomposed into Pauli matrices
σ
0
{\displaystyle \sigma _{0}}
and
σ
→
=
(
σ
1
,
σ
2
,
σ
3
)
{\displaystyle {\vec {\sigma }}=(\sigma _{1},\sigma _{2},\sigma _{3})}
,
H
=
ϵ
0
σ
0
+
ϵ
→
⋅
σ
→
=
ϵ
0
σ
0
+
ϵ
1
σ
1
+
ϵ
2
σ
2
+
ϵ
3
σ
3
{\displaystyle H=\epsilon _{0}\sigma _{0}+{\vec {\epsilon }}\cdot {\vec {\sigma }}=\epsilon _{0}\sigma _{0}+\epsilon _{1}\sigma _{1}+\epsilon _{2}\sigma _{2}+\epsilon _{3}\sigma _{3}}
.
The Green's function is given by
G
(
ω
)
=
(
(
ω
−
ϵ
0
)
σ
0
−
ϵ
→
⋅
σ
→
)
−
1
=
(
ω
−
ϵ
0
)
σ
0
+
ϵ
→
⋅
σ
→
(
ω
−
ϵ
0
)
2
−
ϵ
2
{\displaystyle G(\omega )=((\omega -\epsilon _{0})\sigma _{0}-{\vec {\epsilon }}\cdot {\vec {\sigma }})^{-1}={\frac {(\omega -\epsilon _{0})\sigma _{0}+{\vec {\epsilon }}\cdot {\vec {\sigma }}}{(\omega -\epsilon _{0})^{2}-\epsilon ^{2}}}}
.
The corresponding spectral function reads,
A
(
ω
)
=
(
σ
0
+
ϵ
→
⋅
σ
→
ϵ
)
π
δ
(
ω
−
ϵ
+
)
+
(
σ
0
−
ϵ
→
⋅
σ
→
ϵ
)
π
δ
(
ω
−
ϵ
−
)
{\displaystyle A(\omega )=\left(\sigma _{0}+{\frac {{\vec {\epsilon }}\cdot {\vec {\sigma }}}{\epsilon }}\right)\pi \delta (\omega -\epsilon _{+})+\left(\sigma _{0}-{\frac {{\vec {\epsilon }}\cdot {\vec {\sigma }}}{\epsilon }}\right)\pi \delta (\omega -\epsilon _{-})}
,
where
ϵ
±
=
ϵ
0
±
ϵ
{\displaystyle \epsilon _{\pm }=\epsilon _{0}\pm \epsilon }
and
ϵ
2
=
ϵ
1
2
+
ϵ
2
2
+
ϵ
3
2
{\displaystyle \epsilon ^{2}=\epsilon _{1}^{2}+\epsilon _{2}^{2}+\epsilon _{3}^{2}}
.
The SU(1,1) Hilbert space is a dim-2 space equipped with metric
η
=
σ
3
{\displaystyle \eta =\sigma _{3}}
, any Hermitian operator acting on which is a SU(1,1) Hamiltonian. Still take the Hamiltonian in terms of Pauli matrices
H
=
ϵ
0
σ
0
+
ϵ
→
⋅
σ
→
=
ϵ
0
σ
0
+
ϵ
1
σ
1
+
ϵ
2
σ
2
+
ϵ
3
σ
3
{\displaystyle H=\epsilon _{0}\sigma _{0}+{\vec {\epsilon }}\cdot {\vec {\sigma }}=\epsilon _{0}\sigma _{0}+\epsilon _{1}\sigma _{1}+\epsilon _{2}\sigma _{2}+\epsilon _{3}\sigma _{3}}
.
Note that the metric is not definite. The Green's function is given by
G
(
ω
)
=
(
ω
σ
3
−
H
)
−
1
=
σ
3
(
ω
−
H
σ
3
)
−
1
{\displaystyle G(\omega )=(\omega \sigma _{3}-H)^{-1}=\sigma _{3}(\omega -H\sigma _{3})^{-1}}
.
By introducing
h
0
=
ϵ
3
{\displaystyle h_{0}=\epsilon _{3}}
,
h
1
=
i
ϵ
2
{\displaystyle h_{1}=i\epsilon _{2}}
,
h
2
=
−
i
ϵ
1
{\displaystyle h_{2}=-i\epsilon _{1}}
,
h
3
=
ϵ
0
{\displaystyle h_{3}=\epsilon _{0}}
, one finds
H
σ
3
=
h
0
σ
0
+
h
→
⋅
σ
→
{\displaystyle H\sigma _{3}=h_{0}\sigma _{0}+{\vec {h}}\cdot {\vec {\sigma }}}
,
such that the result in the previous section can be used, yielding
G
(
ω
)
=
(
ω
−
ϵ
3
)
σ
3
+
h
→
⋅
σ
3
σ
→
(
ω
−
ϵ
3
)
2
−
h
2
{\displaystyle G(\omega )={\frac {(\omega -\epsilon _{3})\sigma _{3}+{\vec {h}}\cdot \sigma _{3}{\vec {\sigma }}}{(\omega -\epsilon _{3})^{2}-h^{2}}}}
,
and the spectral function
A
(
ω
)
=
(
σ
3
+
h
→
⋅
σ
3
σ
→
h
)
π
δ
(
ω
−
h
+
)
+
(
σ
3
−
h
→
⋅
σ
3
σ
→
h
)
π
δ
(
ω
−
h
−
)
{\displaystyle A(\omega )=\left(\sigma _{3}+{\frac {{\vec {h}}\cdot \sigma _{3}{\vec {\sigma }}}{h}}\right)\pi \delta (\omega -h_{+})+\left(\sigma _{3}-{\frac {{\vec {h}}\cdot \sigma _{3}{\vec {\sigma }}}{h}}\right)\pi \delta (\omega -h_{-})}
,
where
h
±
=
ϵ
3
±
h
{\displaystyle h_{\pm }=\epsilon _{3}\pm h}
,
h
2
=
ϵ
0
2
−
ϵ
1
2
−
ϵ
2
2
{\displaystyle h^{2}=\epsilon _{0}^{2}-\epsilon _{1}^{2}-\epsilon _{2}^{2}}
and
h
→
⋅
σ
3
σ
→
=
ϵ
0
σ
0
−
ϵ
1
σ
1
−
ϵ
2
σ
2
{\displaystyle {\vec {h}}\cdot \sigma _{3}{\vec {\sigma }}=\epsilon _{0}\sigma _{0}-\epsilon _{1}\sigma _{1}-\epsilon _{2}\sigma _{2}}
.
For the SU(1,1) Hamiltonian, its parameters should satisfy the condition
ϵ
1
2
+
ϵ
2
2
≤
ϵ
0
2
{\displaystyle \epsilon _{1}^{2}+\epsilon _{2}^{2}\leq \epsilon _{0}^{2}}
, otherwise h will be imaginary, and the spectrum will not be stable.
Gerald D. Mahan (2000). Many-Particle Physics (3rd Edition) . Kluwer Academic/Plenum Pulishers. ISBN 0-306-46338-5 .