∂ ν F μ ν = μ 0 j μ {\displaystyle \partial _{\nu }F^{\mu \nu }=\mu _{0}j^{\mu }} ∂ σ F μ ν + ∂ ν F σ μ + ∂ μ F ν σ = 0 {\displaystyle \partial _{\sigma }F_{\mu \nu }+\partial _{\nu }F_{\sigma \mu }+\partial _{\mu }F_{\nu \sigma }=0} R μ ν − 1 2 g μ ν R + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }} d 2 x μ d τ 2 + Γ σ ν μ d x σ d τ d x ν d τ = q m F ν μ d x ν d τ {\displaystyle {\frac {d^{2}x^{\mu }}{d\tau ^{2}}}+\Gamma _{\sigma \nu }^{\mu }{\frac {dx^{\sigma }}{d\tau }}{\frac {dx^{\nu }}{d\tau }}={\frac {q}{m}}F_{\nu }^{\mu }{\frac {dx^{\nu }}{d\tau }}}
h ¯ μ ν = h μ ν − 1 2 η μ ν h {\displaystyle {\bar {h}}_{\mu \nu }=h_{\mu \nu }-{\frac {1}{2}}\eta _{\mu \nu }h} ◻ h ¯ μ ν = 4 π G μ 0 c 4 ( 4 η α β F μ α F β ν − η μ ν η α γ η β δ F β γ F α δ ) − 16 π G c 4 T μ ν M {\displaystyle \Box {\bar {h}}_{\mu \nu }={\frac {4\pi G}{\mu _{0}c^{4}}}\left(4\eta ^{\alpha \beta }F_{\mu \alpha }F_{\beta \nu }-\eta _{\mu \nu }\eta ^{\alpha \gamma }\eta ^{\beta \delta }F_{\beta \gamma }F_{\alpha \delta }\right)-{\frac {16\pi G}{c^{4}}}T_{\mu \nu }^{M}} d 2 x μ d τ 2 + 1 2 η μ σ ( ∂ β h σ α + ∂ α h σ β − ∂ σ h α β ) d x α d τ d x β d τ = q m ( η μ σ − h μ σ ) F ν σ d x ν d τ {\displaystyle {\frac {d^{2}x^{\mu }}{d\tau ^{2}}}+{\frac {1}{2}}\eta ^{\mu \sigma }\left(\partial _{\beta }h_{\sigma \alpha }+\partial _{\alpha }h_{\sigma \beta }-\partial _{\sigma }h_{\alpha \beta }\right){\frac {dx^{\alpha }}{d\tau }}{\frac {dx^{\beta }}{d\tau }}={\frac {q}{m}}\left(\eta ^{\mu \sigma }-h^{\mu \sigma }\right)F_{\nu \sigma }{\frac {dx^{\nu }}{d\tau }}}
μ ≡ G M c 2 {\displaystyle \mu \equiv {\frac {GM}{c^{2}}}} d s 2 = c 2 ( 1 − 2 μ r ) d t 2 − d r 2 1 − 2 μ r − r 2 d θ 2 − r 2 sin 2 θ d ϕ 2 {\displaystyle ds^{2}=c^{2}\left(1-{\frac {2\mu }{r}}\right)dt^{2}-{\frac {dr^{2}}{1-{\frac {2\mu }{r}}}}-r^{2}d\theta ^{2}-r^{2}\sin ^{2}\theta d\phi ^{2}} L = c 2 ( 1 − 2 μ r ) ( d t d τ ) 2 − 1 1 − 2 μ r ( d r d τ ) 2 − r 2 ( d θ d τ ) 2 − r 2 sin 2 θ ( d ϕ d τ ) 2 {\displaystyle {\mathcal {L}}=c^{2}\left(1-{\frac {2\mu }{r}}\right)\left({\frac {dt}{d\tau }}\right)^{2}-{\frac {1}{1-{\frac {2\mu }{r}}}}\left({\frac {dr}{d\tau }}\right)^{2}-r^{2}\left({\frac {d\theta }{d\tau }}\right)^{2}-r^{2}\sin ^{2}{\theta }\left({\frac {d\phi }{d\tau }}\right)^{2}}