In mathematics, Generalised Fermat curve trigonometric functions are complex functions
c
o
s
n
z
,
s
i
n
n
z
{\displaystyle \operatorname {cos_{n}} z,\,\operatorname {sin_{n}} z}
which real values parametrize curve
x
n
+
y
n
=
1
{\displaystyle x^{n}+y^{n}=1}
. That's why these functions satisfy the identity
c
o
s
n
n
z
+
s
i
n
n
n
z
=
1
{\displaystyle \operatorname {cos_{n}} ^{n}z+\operatorname {sin_{n}} ^{n}z=1}
. They are generalizations of regular Trigonometric functions which are the case when
n
=
2
{\displaystyle n=2}
. [ 1] Generalization of
π
{\displaystyle \pi }
for other Fermat curves is:
π
n
=
B
(
1
n
,
1
n
)
=
Γ
2
(
1
n
)
Γ
(
2
n
)
{\displaystyle \pi _{n}=\mathrm {B} {\bigl (}{\tfrac {1}{n}},{\tfrac {1}{n}}{\bigr )}={\frac {\Gamma ^{2}({\frac {1}{n}})}{\Gamma ({\frac {2}{n}})}}}
.
Parametrization of Fermat curves
edit
sin
n
z
,
cos
n
z
{\displaystyle \sin _{n}z,\,\cos _{n}z}
are inverses of these integrals:
z
=
∫
0
sin
n
z
(
1
−
t
n
)
1
−
n
n
d
t
=
∫
cos
n
z
1
(
1
−
t
n
)
1
−
n
n
d
t
{\displaystyle z=\int _{0}^{\sin _{n}z}(1-t^{n})^{\frac {1-n}{n}}dt=\int _{\cos _{n}z}^{1}(1-t^{n})^{\frac {1-n}{n}}dt}
They also parametrize
x
n
+
y
n
=
1
{\displaystyle x^{n}+y^{n}=1}
, in a way that the signed area lying between the segment from the origin to
(
cos
n
z
,
sin
n
z
)
{\displaystyle (\cos _{n}z,\,\sin _{n}z)}
is
1
2
z
{\displaystyle {\tfrac {1}{2}}z}
for
z
∈
[
0
,
π
n
n
]
{\displaystyle z\in [0,{\frac {\pi _{n}}{n}}]}
.
The area in the positive quadrant under the curve
x
n
+
y
n
=
1
{\displaystyle x^{n}+y^{n}=1}
is
∫
0
1
(
1
−
x
n
)
1
/
n
d
x
=
π
n
2
n
{\displaystyle \int _{0}^{1}(1-x^{n})^{1/n}\mathop {dx} ={\frac {\pi _{n}}{2n}}}
.
m
{\displaystyle m}
c
o
s
n
m
{\displaystyle \operatorname {cos_{n}} m}
s
i
n
n
m
{\displaystyle \operatorname {sin_{n}} m}
0
{\displaystyle 0}
1
{\displaystyle 1}
0
{\displaystyle 0}
π
n
2
n
{\displaystyle {\frac {\pi _{n}}{2n}}}
1
/
2
n
{\displaystyle 1/{\sqrt[{n}]{2}}}
1
/
2
n
{\displaystyle 1/{\sqrt[{n}]{2}}}
π
n
n
{\displaystyle {\frac {\pi _{n}}{n}}}
0
{\displaystyle 0}
1
{\displaystyle 1}
Trigonometric functions
edit
In case when
n
=
2
{\displaystyle n=2}
, we get Trigonometric functions
cos
{\displaystyle \operatorname {cos} }
and
sin
{\displaystyle \operatorname {sin} }
which satisfy
cos
2
x
+
sin
2
x
=
1
{\displaystyle \cos ^{2}x+\sin ^{2}x=1}
and parametrize Unit circle .
Reflection identities
edit
cos
(
z
+
π
)
=
−
cos
(
z
)
{\displaystyle \operatorname {cos} (z+\pi )=-\operatorname {cos} (z)}
sin
(
z
+
π
)
=
−
sin
(
z
)
{\displaystyle \operatorname {sin} (z+\pi )=-\operatorname {sin} (z)}
cos
(
π
−
z
)
=
−
cos
(
z
)
{\displaystyle \operatorname {cos} (\pi -z)=-\operatorname {cos} (z)}
sin
(
π
−
z
)
=
sin
(
z
)
{\displaystyle \operatorname {sin} (\pi -z)=\operatorname {sin} (z)}
cos
(
−
z
)
=
cos
(
z
)
{\displaystyle \operatorname {cos} (-z)=\operatorname {cos} (z)}
sin
(
−
z
)
=
−
sin
(
z
)
{\displaystyle \operatorname {sin} (-z)=-\operatorname {sin} (z)}
cos
(
z
+
2
π
)
=
cos
(
z
)
{\displaystyle \operatorname {cos} (z+2\pi )=\operatorname {cos} (z)}
sin
(
z
+
2
π
)
=
sin
(
z
)
{\displaystyle \operatorname {sin} (z+2\pi )=\operatorname {sin} (z)}
cos
(
π
2
−
z
)
=
sin
(
z
)
{\displaystyle \operatorname {cos} ({\frac {\pi }{2}}-z)=\operatorname {sin} (z)}
sin
(
π
2
−
z
)
=
cos
(
z
)
{\displaystyle \operatorname {sin} ({\frac {\pi }{2}}-z)=\operatorname {cos} (z)}
n
{\displaystyle n}
cos
(
n
)
{\displaystyle \cos(n)}
sin
(
n
)
{\displaystyle \sin(n)}
0
{\displaystyle 0}
1
{\displaystyle 1}
0
{\displaystyle 0}
π
12
{\displaystyle {\frac {\pi }{12}}}
6
+
2
4
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
6
−
2
4
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
π
6
{\displaystyle {\frac {\pi }{6}}}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
1
2
{\displaystyle {\frac {1}{2}}}
π
4
{\displaystyle {\frac {\pi }{4}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
π
3
{\displaystyle {\frac {\pi }{3}}}
1
2
{\displaystyle {\frac {1}{2}}}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
5
π
12
{\displaystyle {\frac {5\pi }{12}}}
6
−
2
4
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
6
+
2
4
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
π
2
{\displaystyle {\frac {\pi }{2}}}
0
{\displaystyle 0}
1
{\displaystyle 1}
Multiple Argument identities
edit
cos
(
2
n
)
=
2
cos
2
n
−
1
{\displaystyle \cos(2n)=2\cos ^{2}n-1}
sin
(
2
n
)
=
2
sin
n
cos
n
{\displaystyle \sin(2n)=2\sin n\cos n}
cos
(
3
n
)
=
4
cos
3
n
−
3
cos
n
{\displaystyle \cos(3n)=4\cos ^{3}n-3\cos n}
sin
(
3
n
)
=
3
sin
n
−
4
sin
3
n
{\displaystyle \sin(3n)=3\sin n-4\sin ^{3}n}
Sum and Difference identities
edit
cos
(
x
+
y
)
=
cos
x
cos
y
−
sin
x
sin
y
,
sin
(
x
+
y
)
=
sin
x
cos
y
+
cos
x
sin
y
,
cos
(
x
−
y
)
=
cos
x
cos
y
+
sin
x
sin
y
,
sin
(
x
−
y
)
=
sin
x
cos
y
−
cos
x
sin
y
{\displaystyle {\begin{aligned}\cos \left(x+y\right)&=\cos x\cos y-\sin x\sin y,\\[5mu]\sin \left(x+y\right)&=\sin x\cos y+\cos x\sin y,\\[5mu]\cos \left(x-y\right)&=\cos x\cos y+\sin x\sin y,\\[5mu]\sin \left(x-y\right)&=\sin x\cos y-\cos x\sin y\end{aligned}}}
c
o
s
′
(
z
)
=
−
sin
(
z
)
{\displaystyle \operatorname {cos'} (z)=-\operatorname {sin} (z)}
s
i
n
′
(
z
)
=
cos
(
z
)
{\displaystyle \operatorname {sin'} (z)=\operatorname {cos} (z)}
Dixon elliptic functions
edit
In case when
n
=
3
{\displaystyle n=3}
, we get Dixon elliptic functions
cm
{\displaystyle \operatorname {cm} }
and
sm
{\displaystyle \operatorname {sm} }
which satisfy
cm
3
z
+
sm
3
z
=
1
{\displaystyle \operatorname {cm} ^{3}z+\operatorname {sm} ^{3}z=1}
with period of
π
3
{\displaystyle \pi _{3}}
, which parametrize the cubic Fermat curve
x
3
+
y
3
=
1
{\displaystyle x^{3}+y^{3}=1}
.
Let
ω
=
exp
2
3
i
π
=
−
1
2
+
3
2
i
{\displaystyle \omega =\exp {\tfrac {2}{3}}i\pi =-{\tfrac {1}{2}}+{\tfrac {\sqrt {3}}{2}}i}
.
Reflection identities
edit
cm
z
¯
=
cm
z
¯
,
sm
z
¯
=
sm
z
¯
,
{\displaystyle {\begin{aligned}\operatorname {cm} {\bar {z}}&={\overline {\operatorname {cm} z}},\\\operatorname {sm} {\bar {z}}&={\overline {\operatorname {sm} z}},\end{aligned}}}
cm
ω
z
=
cm
z
=
cm
ω
2
z
,
sm
ω
z
=
ω
sm
z
=
ω
2
sm
ω
2
z
,
{\displaystyle {\begin{aligned}\operatorname {cm} \omega z&=\operatorname {cm} z=\operatorname {cm} \omega ^{2}z,\\\operatorname {sm} \omega z&=\omega \operatorname {sm} z=\omega ^{2}\operatorname {sm} \omega ^{2}z,\end{aligned}}}
cm
(
z
+
π
3
(
a
+
b
ω
)
)
=
cm
z
,
sm
(
z
+
π
3
(
a
+
b
ω
)
)
=
sm
z
,
{\displaystyle {\begin{aligned}\operatorname {cm} {\bigl (}z+\pi _{3}(a+b\omega ){\bigr )}=\operatorname {cm} z,\\\operatorname {sm} {\bigl (}z+\pi _{3}(a+b\omega ){\bigr )}=\operatorname {sm} z,\end{aligned}}}
cm
(
−
z
)
=
1
cm
z
=
sm
(
z
+
1
3
π
3
)
,
sm
(
−
z
)
=
−
sm
z
cm
z
=
1
sm
(
z
−
1
3
π
3
)
=
cm
(
z
+
1
3
π
3
)
,
{\displaystyle {\begin{aligned}\operatorname {cm} (-z)&={\frac {1}{\operatorname {cm} z}}=\operatorname {sm} {\bigl (}z+{\tfrac {1}{3}}\pi _{3}{\bigr )},\\\operatorname {sm} (-z)&=-{\frac {\operatorname {sm} z}{\operatorname {cm} z}}={\frac {1}{\operatorname {sm} {\bigl (}z-{\tfrac {1}{3}}\pi _{3}{\bigr )}}}=\operatorname {cm} {\bigl (}z+{\tfrac {1}{3}}\pi _{3}{\bigr )},\end{aligned}}}
cm
(
z
+
1
3
ω
π
3
)
=
ω
2
−
sm
z
cm
z
,
sm
(
z
+
1
3
ω
π
3
)
=
ω
1
cm
z
.
{\displaystyle {\begin{aligned}\operatorname {cm} {\bigl (}z+{\tfrac {1}{3}}\omega \pi _{3}{\bigr )}&=\omega ^{2}{\frac {-\operatorname {sm} z}{\operatorname {cm} z}},\\\operatorname {sm} {\bigl (}z+{\tfrac {1}{3}}\omega \pi _{3}{\bigr )}&=\omega {\frac {1}{\operatorname {cm} z}}.\end{aligned}}}
n
{\displaystyle n}
cm
n
{\displaystyle \operatorname {cm} n}
sm
n
{\displaystyle \operatorname {sm} n}
−
1
3
π
3
{\displaystyle {-{\tfrac {1}{3}}}\pi _{3}}
∞
{\displaystyle \infty }
∞
{\displaystyle \infty }
−
1
6
π
3
{\displaystyle {-{\tfrac {1}{6}}}\pi _{3}}
2
3
{\displaystyle {\sqrt[{3}]{2}}}
−
1
{\displaystyle -1}
0
{\displaystyle 0}
1
{\displaystyle 1}
0
{\displaystyle 0}
1
6
π
3
{\displaystyle {\tfrac {1}{6}}\pi _{3}}
1
/
2
3
{\displaystyle 1{\big /}{\sqrt[{3}]{2}}}
1
/
2
3
{\displaystyle 1{\big /}{\sqrt[{3}]{2}}}
1
3
π
3
{\displaystyle {\tfrac {1}{3}}\pi _{3}}
0
{\displaystyle 0}
1
{\displaystyle 1}
1
2
π
3
{\displaystyle {\tfrac {1}{2}}\pi _{3}}
−
1
{\displaystyle -1}
2
3
{\displaystyle {\sqrt[{3}]{2}}}
2
3
π
3
{\displaystyle {\tfrac {2}{3}}\pi _{3}}
∞
{\displaystyle \infty }
∞
{\displaystyle \infty }
Multiple Argument identities
edit
cm
2
n
=
2
cm
3
n
−
1
2
cm
n
−
cm
4
n
,
sm
2
n
=
2
sm
n
−
sm
4
n
2
cm
n
−
cm
4
n
,
cm
3
n
=
cm
9
n
−
6
cm
6
n
+
3
cm
3
n
+
1
cm
9
n
+
3
cm
6
n
−
6
cm
3
n
+
1
,
sm
3
n
=
3
sm
n
cm
n
(
sm
3
n
cm
3
n
−
1
)
cm
9
n
+
3
cm
6
n
−
6
cm
3
n
+
1
.
{\displaystyle {\begin{aligned}\operatorname {cm} 2n&={\frac {2\operatorname {cm} ^{3}n-1}{2\operatorname {cm} n-\operatorname {cm} ^{4}n}},\\[5mu]\operatorname {sm} 2n&={\frac {2\operatorname {sm} n-\operatorname {sm} ^{4}n}{2\operatorname {cm} n-\operatorname {cm} ^{4}n}},\\[5mu]\operatorname {cm} 3n&={\frac {\operatorname {cm} ^{9}n-6\operatorname {cm} ^{6}n+3\operatorname {cm} ^{3}n+1}{\operatorname {cm} ^{9}n+3\operatorname {cm} ^{6}n-6\operatorname {cm} ^{3}n+1}},\\[5mu]\operatorname {sm} 3n&={\frac {3\operatorname {sm} n\,\operatorname {cm} n(\operatorname {sm} ^{3}n\,\operatorname {cm} ^{3}n-1)}{\operatorname {cm} ^{9}n+3\operatorname {cm} ^{6}n-6\operatorname {cm} ^{3}n+1}}.\end{aligned}}}
Sum and Difference identities
edit
cm
(
u
+
v
)
=
sm
u
cm
u
−
sm
v
cm
v
sm
u
cm
2
v
−
cm
2
u
sm
v
cm
(
u
−
v
)
=
cm
2
u
cm
v
−
sm
u
sm
2
v
cm
u
cm
2
v
−
sm
2
u
sm
v
sm
(
u
+
v
)
=
sm
2
u
cm
v
−
cm
u
sm
2
v
sm
u
cm
2
v
−
cm
2
u
sm
v
sm
(
u
−
v
)
=
sm
u
cm
u
−
sm
v
cm
v
cm
u
cm
2
v
−
sm
2
u
sm
v
{\displaystyle {\begin{aligned}\operatorname {cm} (u+v)&={\frac {\operatorname {sm} u\,\operatorname {cm} u-\operatorname {sm} v\,\operatorname {cm} v}{\operatorname {sm} u\,\operatorname {cm} ^{2}v-\operatorname {cm} ^{2}u\,\operatorname {sm} v}}\\[8mu]\operatorname {cm} (u-v)&={\frac {\operatorname {cm} ^{2}u\,\operatorname {cm} v-\operatorname {sm} u\,\operatorname {sm} ^{2}v}{\operatorname {cm} u\,\operatorname {cm} ^{2}v-\operatorname {sm} ^{2}u\,\operatorname {sm} v}}\\[8mu]\operatorname {sm} (u+v)&={\frac {\operatorname {sm} ^{2}u\,\operatorname {cm} v-\operatorname {cm} u\,\operatorname {sm} ^{2}v}{\operatorname {sm} u\,\operatorname {cm} ^{2}v-\operatorname {cm} ^{2}u\,\operatorname {sm} v}}\\[8mu]\operatorname {sm} (u-v)&={\frac {\operatorname {sm} u\,\operatorname {cm} u-\operatorname {sm} v\,\operatorname {cm} v}{\operatorname {cm} u\,\operatorname {cm} ^{2}v-\operatorname {sm} ^{2}u\,\operatorname {sm} v}}\end{aligned}}}
c
m
′
(
z
)
=
−
sm
2
(
z
)
{\displaystyle \operatorname {cm'} (z)=-\operatorname {sm} ^{2}(z)}
s
m
′
(
z
)
=
cm
2
(
z
)
{\displaystyle \operatorname {sm'} (z)=\operatorname {cm} ^{2}(z)}
Quartic Trigonometric functions
edit
In case when
n
=
4
{\displaystyle n=4}
, we get
c
o
s
4
{\displaystyle \operatorname {cos_{4}} }
and
s
i
n
4
{\displaystyle \operatorname {sin_{4}} }
which satisfy
c
o
s
4
4
z
+
s
i
n
4
4
z
=
1
{\displaystyle \operatorname {cos_{4}} ^{4}z+\operatorname {sin_{4}} ^{4}z=1}
with period of
π
4
=
2
2
ϖ
{\displaystyle \pi _{4}=2{\sqrt {2}}\varpi }
, which parametrize the quartic Fermat curve
x
4
+
y
4
=
1
{\displaystyle x^{4}+y^{4}=1}
. Unlike previous cases, they are not meromorphic , but their squares and ratios are. They are related to Lemniscate elliptic functions by
s
i
n
4
n
c
o
s
4
n
=
slh
n
{\displaystyle {\frac {\operatorname {sin_{4}} n}{\operatorname {cos_{4}} n}}=\operatorname {slh} n}
, where
slh
{\displaystyle \operatorname {slh} }
is hyperbolic lemiscate sine which is related to regular lemniscate functions by:
slh
(
2
z
)
=
1
−
i
2
sl
(
(
1
+
i
)
z
)
=
sl
(
−
4
4
z
)
−
1
4
=
(
1
+
cl
2
z
)
sl
z
2
cl
z
{\displaystyle \operatorname {slh} ({\sqrt {2}}z)={\frac {1-i}{\sqrt {2}}}\operatorname {sl} ((1+i)z)={\frac {\operatorname {sl} ({\sqrt[{4}]{-4}}z)}{\sqrt[{4}]{-1}}}={\frac {(1+\operatorname {cl} ^{2}z)\operatorname {sl} z}{{\sqrt {2}}\operatorname {cl} z}}}
n
{\displaystyle n}
c
o
s
4
n
{\displaystyle \operatorname {cos_{4}} n}
s
i
n
4
n
{\displaystyle \operatorname {sin_{4}} n}
0
{\displaystyle 0}
1
{\displaystyle 1}
0
{\displaystyle 0}
1
16
π
4
{\displaystyle {\tfrac {1}{16}}\pi _{4}}
1
+
2
2
−
2
2
4
{\displaystyle {\sqrt[{4}]{\frac {1+{\sqrt {2{\sqrt {2}}-2}}}{2}}}}
1
−
2
2
−
2
2
4
{\displaystyle {\sqrt[{4}]{\frac {1-{\sqrt {2{\sqrt {2}}-2}}}{2}}}}
1
12
π
4
{\displaystyle {\tfrac {1}{12}}\pi _{4}}
3
4
8
{\displaystyle {\sqrt[{8}]{\frac {3}{4}}}}
3
−
1
2
{\displaystyle {\sqrt {\frac {{\sqrt {3}}-1}{2}}}}
1
8
π
4
{\displaystyle {\tfrac {1}{8}}\pi _{4}}
1
/
2
4
{\displaystyle 1{\big /}{\sqrt[{4}]{2}}}
1
/
2
4
{\displaystyle 1{\big /}{\sqrt[{4}]{2}}}
1
4
π
4
{\displaystyle {\tfrac {1}{4}}\pi _{4}}
0
{\displaystyle 0}
1
{\displaystyle 1}
1
2
π
4
{\displaystyle {\tfrac {1}{2}}\pi _{4}}
−
1
{\displaystyle -1}
0
{\displaystyle 0}
3
4
π
4
{\displaystyle {\tfrac {3}{4}}\pi _{4}}
0
{\displaystyle 0}
−
1
{\displaystyle -1}
π
4
{\displaystyle \pi _{4}}
1
{\displaystyle 1}
0
{\displaystyle 0}
^ Lundberg (1879), Grammel (1948), Shelupsky (1959), Burgoyne (1964), Gambini, Nicoletti, & Ritelli (2021).