User:Isabellawhiting19/Mitochondrial membrane transport protein

Intro

edit

Mitochondrial membrane transport proteins are proteins which exist in the membranes of mitochondria. They serve to transport molecules and other factors, such as ions, into or out of the organelles. Mitochondria contain both an inner and outer membrane, separated by the intermembrane space. The outer membrane is porous, whereas the inner membrane restricts the movement of all molecules. The two membranes also vary in membrane potential and pH. These factors play a role in the function of mitochondrial membrane transport proteins. There are 53 known mitochondrial carriers.

The Mitochondrial Outer Membrane

edit

The outer mitochondrial membrane forms the border of mitochondria towards the cellular environment. The outer membrane mitochondrial proteins carry out functions for mitochondrial biogenesis and integration between mitochondria and the cellular system. The outer membrane consists of two types of integral proteins, including proteins with transmembrane β-barrel and proteins with one or more α-helical membrane anchors[1][2].

β-Barrel Outer Membrane Proteins

edit

The TOM Complex

edit

The TOM complex, part of the TOM/TIM supercomplex, is essential for the translocase of almost all mitochondrial proteins which consists of at least 7 different subunits. Tom20 and Tom70 are the primary receptors while Tom40, Tom22, Tom7, Tom6, and Tom5 subunits form the stable TOM Complex [3][4][5]. The receptor proteins Tom70 and Tom20 recognize incoming precursor proteins, in which Tom70 is responsible for docking of precursors of hydrophobic proteins accompanied by cytosolic chaperones and Tom 20 recognizes precursor proteins of the presequence pathways[6] [7][8][9][10][11][12]. Tom40 is the protein-conducting channel of the complex with β-barrel structure [13][14], which forms a cation-selective channel. Tom40 has a large pore diameter of 22Å that can allow the accommodation of partially folded protein structure[15]. The inner wall of Tom40 has a charged region that allows interaction with hydrophilic precursor proteins while the hydrophobic precursor of ADP/ATP carrier can be crosslinked with the hydrophobic region of Tom40. Three small proteins Tom5, Tom6, Tom7 interact closely with Tom40 to assemble and stabilize the complex. The TOM complex also consists of a dimer of Tom40 or small Tom proteins that are held together by two Tom22 subunits[16][17]. Protein sorting into the mitochondrial compartments always starts at the TOM complex. The TOM complex forms two exit sites for precursor proteins-- Tom40, Tom7, and the intermembrane space domain of Tom22-- promote the transfer of presequence-containing precursors to the TIM23 complex[16].

The SAM Complex

edit

The SAM Complex is essential for sorting and assembling β-barrel proteins from the intermembrane space side into the outer membrane [18] [19][20]. The SAM complex consists of three subunits: The β-barrel protein Sam50 and two peripheral subunits Sam35 and Sam37 [18][21][22]. Sam50 belongs to the conserved Omp85 protein family which can be characterized by a 16-stranded β-barrel and by a different number of polypeptide transport-associated (POTRA) domains [19][20]. Sam50 exposes a single POTRA domain towards the intermembrane space[22][23]. Sam35 caps the Sam50 β-barrel, stabilizing the core of the protein translocase[22][24][25]. Sam50 and Sam35 are responsible for the binding of precursors of β-barrel proteins, which contain conserved β-signal that is formed by the last β-strand[26][27]. The β-barrel of Sam50 is the functional domain that inserts and folds substrate proteins into the outer membrane.

Sam35 binds to Sam50 and closely interacts with Sam37, in which Sam37 does not bind to Sam50. Sam37 and Sam35 have a conformation similar to glutathione-S-transferase, except they do not possess residues required for enzymatic activity. Sam37 accommodates the release of the folded β-barrel proteins from the SAM complex[27].

Voltage-dependent anion ion channel or VDAC

edit

VDAC (voltage-dependent anion ion channel) is important for the exchange of small hydrophilic ions and metabolites with the cytosol, which is driven by the gradient concentration across the outer membrane. VDAC is the most abundant protein in the outer membrane[28][29]. Like Tom40, VDAC has a β-barrel structure with antiparallel β-strands that can facilitate the passage of β-barrel membrane proteins. VDAC has a pore size of 2-4 nm for small hydrophilic molecules. VDAC plays a crucial role in facilitating energy metabolism by transporting ADP and ATP in and out of the outer membrane. VDAC also accommodates the passage of NADH and many anionic metabolites. VDAC operation is voltage-dependent in which it closes at high voltage and can partially open towards slightly reduced anion selectivity[30][31].

α-Helical Outer Membrane Proteins

edit

The Mitochondrial Import Complex (MIM)

edit

The import pathways of α-helical membrane anchors or signal-anchored proteins are carried out mainly by outer membrane proteins[2]. Precursors of the polytopic or multi-spanning proteins can be recognized by Tom70, but cannot be passed through the Tom40 channel[8] [32][33]. Tom70 transfers the precursor proteins to the MIM Complex. The MIM complex constitutes the major inserts for alpha-helical proteins into the target membrane [8][9][33]. The MIM Complex consists of several copies of Mim1 and one or two copies of Mim2. Both subunits are necessary for stabilizing partner proteins and for outer membrane protein biogenesis[34]

The Mitochondrial Inner Membrane

edit

The inner mitochondrial membrane is a structure that surrounds the mitochondrial matrix, characterized by many folds and compartments that form crista and is the site of oxidative phosphorylation and ATP synthesis.[35][36] The high concentration of cardiolipin, a lipid that makes up 20% of the inner membrane composition, makes it impermeable to most molecules.[37] Specialized transporters arranged in specific configurations are required to regulate the diffusion of molecules across the membrane. The inner membrane's structure causes a membrane potential of approximately 180 mV.[35][36]

Respiratory chain supercomplex

edit
Respiratory chain supercomplex components

The respiratory chain supercomplex is located in the cristae of the inner membrane. It is composed of five complexes that work together to drive oxidative phosphorylation and ATP synthesis.[35]

NADH/ubiquinone oxidoreductase

edit

NADH/ubiquinone oxidoreductase, also known as complex I, is the first and largest protein in the mitochondrial respiratory chain. It consists of a membrane arm, embedded inside the inner mitochondrial membrane, and a matrix arm, extending out of the membrane. There are 78 transmembrane helices and three proton pumps. The junction of the two arms is the site of conduction of NADH to ubiquinol.[35] In humans, complex I is a scaffold needed for complex III and IV, and it will not function without these other complexes being present. Not every species requires complex I. In these instances, complex III and IV function without it.[38]

Cytochrome c reductase, succinate dehydrogenase, and cytochrome c oxidase

edit

Cytochrome c reductase, also known as complex III, is the second protein in the respiratory chain. It pumps electrons from complex I, through succinate dehydrogenase (complex II) to cytochrome c (complex IV). Complex III and IV are proton pumps, pumping H+ protons out of the mitochondrial matrix, and work in conjunction with complex I to create the proton gradient found at the inner membrane. Cytochrome c is and electron carrier protein that travels between complex III and IV, and triggers apoptosis if it leaves the cristae. Complex IV passes electrons to oxygen, the final acceptor in the mitochondrial electron transport chain.[35][38]

ATP synthase

edit

ATP synthase (complex V) is responsible for ATP production by adding a phosphate ion to an ADP molecule in the cristae. F1-Fo ATP synthase produces ATP via rotary catalysis. It is made up of a rotor ring composed of c-subunits, a peripheral stalk, a central stalk, F1 head, and Fo complex. The rotor ring is turned by protons passing through the Fo complex. This generates torque to the F1 head, causing production of ATP from ADP and phosphate. In addition to ATP production, ATP synthase is partially responsible for the overall structure of the inner mitochondrial membrane in eukaryotic organisms. The complexes form dimers, which bend the lipid bilayer of the membrane through the energy of elastic membrane deformation and the dimers self-associate into rows. These rows form the deep curves of the inner membrane cristae.[35]

MICOS- see if really needed (is it just strx or is there a transport mechanism it does?)

edit

TIM complex

edit

The TIM complex is a protein translocase located on the inner membrane. It is part of the TOM/TIM supercomplex, which spans the intermembrane space.[35] The TIM complex is responsible for sorting proteins into the mitochondrial matrix or into the membrane. TIM22 and TIM23 are the main subunits. TIM 22 is responsible for allowing other mitochondrial transporters to insert themselves into the inner membrane, whereas TIM23 reads proteins with an N-terminus precursor for import into the membrane or matrix.[39]

Phosphate transport protein

edit

Phosphate transport proteins are similar in structure and are both part of the same family of mitochondrial carriers. It consists of 6 transmembrane α-helices, but lacks the 7 amino acid loop 12 found in ADP, ATP translocase. Phosphate transport proteins are responsible for transport of phosphate across the inner membrane so it can be used in the phosphorylation of ADP.

Mutations of Mitochondrial Membrane Transport Proteins

edit

Mutations of DNA coding for mitochondrial membrane transport proteins are linked to a wide range of diseases and disorders, such as cardiomyopathy, encephalopathy, muscular dystrophy, epilepsy, neuropathy, and fingernail dysplasia.[40] Most mutations of mitochondrial membrane transporters are autosomal recessive.(citations in real article). Mutations to transporters within the inner mitochondrial membrane mostly affect high-energy tissues due to the disruption of oxidative phosphorylation. For example, decreased mitochondrial function has been linked to heart failure and hypertrophy. This mitochondrial response translates into a shift towards glycolysis and lactate production that can cause tumor formation and proliferation of the tissues.[38]

Reference

edit
  1. ^ Morgenstern, Marcel; Stiller, Sebastian B.; Lübbert, Philipp; Peikert, Christian D.; Dannenmaier, Stefan; Drepper, Friedel; Weill, Uri; Höß, Philipp; Feuerstein, Reinhild; Gebert, Michael; Bohnert, Maria (2017-06). "Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale". Cell Reports. 19 (13): 2836–2852. doi:10.1016/j.celrep.2017.06.014. ISSN 2211-1247. {{cite journal}}: Check date values in: |date= (help)
  2. ^ a b Zahedi, Rene P.; Sickmann, Albert; Boehm, Andreas M.; Winkler, Christiane; Zufall, Nicole; Schönfisch, Birgit; Guiard, Bernard; Pfanner, Nikolaus; Meisinger, Chris (2006-03-XX). "Proteomic Analysis of the Yeast Mitochondrial Outer Membrane Reveals Accumulation of a Subclass of Preproteins". Molecular Biology of the Cell. 17 (3): 1436–1450. doi:10.1091/mbc.e05-08-0740. ISSN 1059-1524. PMC 1382330. PMID 16407407. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  3. ^ Dekker, Peter J. T.; Ryan, Michael T.; Brix, Jan; Müller, Hanne; Hönlinger, Angelika; Pfanner, Nikolaus (1998-11-01). "Preprotein Translocase of the Outer Mitochondrial Membrane: Molecular Dissection and Assembly of the General Import Pore Complex". Molecular and Cellular Biology. 18 (11): 6515–6524. doi:10.1128/mcb.18.11.6515. ISSN 1098-5549.
  4. ^ Künkele, Klaus-Peter; Heins, Susanne; Dembowski, Markus; Nargang, Frank E; Benz, Roland; Thieffry, Michel; Walz, Jochen; Lill, Roland; Nussberger, Stephan; Neupert, Walter (1998-06-XX). "The Preprotein Translocation Channel of the Outer Membrane of Mitochondria". Cell. 93 (6): 1009–1019. doi:10.1016/s0092-8674(00)81206-4. ISSN 0092-8674. {{cite journal}}: Check date values in: |date= (help)
  5. ^ Ahting, Uwe; Thun, Clemens; Hegerl, Reiner; Typke, Dieter; Nargang, Frank E.; Neupert, Walter; Nussberger, Stephan (1999-11-29). "The Tom Core Complex". Journal of Cell Biology. 147 (5): 959–968. doi:10.1083/jcb.147.5.959. ISSN 0021-9525.
  6. ^ Young, Jason C.; Hoogenraad, Nicholas J.; Hartl, F.Ulrich (2003-01). "Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70". Cell. 112 (1): 41–50. doi:10.1016/s0092-8674(02)01250-3. ISSN 0092-8674. {{cite journal}}: Check date values in: |date= (help)
  7. ^ Yamamoto, Hayashi; Fukui, Kenji; Takahashi, Hisashi; Kitamura, Shingo; Shiota, Takuya; Terao, Kayoko; Uchida, Mayumi; Esaki, Masatoshi; Nishikawa, Shuh-ichi; Yoshihisa, Tohru; Yamano, Koji (2009-11-13). "Roles of Tom70 in Import of Presequence-containing Mitochondrial Proteins *". Journal of Biological Chemistry. 284 (46): 31635–31646. doi:10.1074/jbc.M109.041756. ISSN 0021-9258. PMC 2797234. PMID 19767391.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  8. ^ a b c Becker, Thomas; Wenz, Lena-Sophie; Krüger, Vivien; Lehmann, Waltraut; Müller, Judith M.; Goroncy, Luise; Zufall, Nicole; Lithgow, Trevor; Guiard, Bernard; Chacinska, Agnieszka; Wagner, Richard (2011-08-08). "The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins". Journal of Cell Biology. 194 (3): 387–395. doi:10.1083/jcb.201102044. ISSN 1540-8140.
  9. ^ a b Papić, Dražen; Krumpe, Katrin; Dukanovic, Jovana; Dimmer, Kai S.; Rapaport, Doron (2011-08-08). "Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-dependent import pathway". Journal of Cell Biology. 194 (3): 397–405. doi:10.1083/jcb.201102041. ISSN 1540-8140.
  10. ^ Opaliński, Łukasz; Song, Jiyao; Priesnitz, Chantal; Wenz, Lena-Sophie; Oeljeklaus, Silke; Warscheid, Bettina; Pfanner, Nikolaus; Becker, Thomas (2018-11). "Recruitment of Cytosolic J-Proteins by TOM Receptors Promotes Mitochondrial Protein Biogenesis". Cell Reports. 25 (8): 2036–2043.e5. doi:10.1016/j.celrep.2018.10.083. ISSN 2211-1247. {{cite journal}}: Check date values in: |date= (help)
  11. ^ Backes, Sandra; Hess, Steffen; Boos, Felix; Woellhaf, Michael W.; Gödel, Sabrina; Jung, Martin; Mühlhaus, Timo; Herrmann, Johannes M. (2018-01-30). "Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences". Journal of Cell Biology. 217 (4): 1369–1382. doi:10.1083/jcb.201708044. ISSN 0021-9525.
  12. ^ Yamano, Koji; Yatsukawa, Yoh-ichi; Esaki, Masatoshi; Hobbs, Alyson E. Aiken; Jensen, Robert E.; Endo, Toshiya (2008-02). "Tom20 and Tom22 Share the Common Signal Recognition Pathway in Mitochondrial Protein Import". Journal of Biological Chemistry. 283 (7): 3799–3807. doi:10.1074/jbc.m708339200. ISSN 0021-9258. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  13. ^ Mannella, C. A.; Neuwald, A. F.; Lawrence, C. E. (1996-04-XX). "Detection of likely transmembrane β-strand regions in sequences of mitochondrial pore proteins using the Gibbs sampler". Journal of Bioenergetics and Biomembranes. 28 (2): 163–169. doi:10.1007/bf02110647. ISSN 0145-479X. {{cite journal}}: Check date values in: |date= (help)
  14. ^ Hill, Kerstin; Model, Kirstin; Ryan, Michael T.; Dietmeier, Klaus; Martin, Falk; Wagner, Richard; Pfanner, Nikolaus (1998-10-XX). "Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins". Nature. 395 (6701): 516–521. doi:10.1038/26780. ISSN 0028-0836. {{cite journal}}: Check date values in: |date= (help)
  15. ^ T., Wiedemann, Nils Pfanner, Nikolaus Ryan, Michael (2001-03-01). The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. Oxford University Press. OCLC 678227688.{{cite book}}: CS1 maint: multiple names: authors list (link)
  16. ^ a b Araiso, Yuhei; Tsutsumi, Akihisa; Qiu, Jian; Imai, Kenichiro; Shiota, Takuya; Song, Jiyao; Lindau, Caroline; Wenz, Lena-Sophie; Sakaue, Haruka; Yunoki, Kaori; Kawano, Shin (2019-11). "Structure of the mitochondrial import gate reveals distinct preprotein paths". Nature. 575 (7782): 395–401. doi:10.1038/s41586-019-1680-7. ISSN 1476-4687. {{cite journal}}: Check date values in: |date= (help)
  17. ^ Tucker, Kyle; Park, Eunyong (2019-11-18). "Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution". Nature Structural & Molecular Biology. 26 (12): 1158–1166. doi:10.1038/s41594-019-0339-2. ISSN 1545-9993.
  18. ^ a b Wiedemann, Nils; Kozjak, Vera; Chacinska, Agnieszka; Schönfisch, Birgit; Rospert, Sabine; Ryan, Michael T.; Pfanner, Nikolaus; Meisinger, Chris (2003-07). "Machinery for protein sorting and assembly in the mitochondrial outer membrane". Nature. 424 (6948): 565–571. doi:10.1038/nature01753. ISSN 0028-0836. {{cite journal}}: Check date values in: |date= (help)
  19. ^ a b Gentle, Ian; Gabriel, Kipros; Beech, Peter; Waller, Ross; Lithgow, Trevor (2004-01-05). "The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria". Journal of Cell Biology. 164 (1): 19–24. doi:10.1083/jcb.200310092. ISSN 1540-8140. PMC 2171957. PMID 14699090.{{cite journal}}: CS1 maint: PMC format (link)
  20. ^ a b Höhr, Alexandra I. C.; Lindau, Caroline; Wirth, Christophe; Qiu, Jian; Stroud, David A.; Kutik, Stephan; Guiard, Bernard; Hunte, Carola; Becker, Thomas; Pfanner, Nikolaus; Wiedemann, Nils (2018-01-19). "Membrane protein insertion through a mitochondrial β-barrel gate". Science. 359 (6373): eaah6834. doi:10.1126/science.aah6834. ISSN 0036-8075. PMC 5959003. PMID 29348211.{{cite journal}}: CS1 maint: PMC format (link)
  21. ^ Klein, Astrid; Israel, Lars; Lackey, Sebastian W.K.; Nargang, Frank E.; Imhof, Axel; Baumeister, Wolfgang; Neupert, Walter; Thomas, Dennis R. (2012-11-05). "Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane". Journal of Cell Biology. 199 (4): 599–611. doi:10.1083/jcb.201207161. ISSN 1540-8140.
  22. ^ a b c Diederichs, Kathryn A.; Ni, Xiaodan; Rollauer, Sarah E.; Botos, Istvan; Tan, Xiaofeng; King, Martin S.; Kunji, Edmund R.S.; Jiang, Jiansen; Buchanan, Susan K. (2020-04-10). "Structural Insight into Mitochondrial β-Barrel Outer Membrane Protein Biogenesis". dx.doi.org. Retrieved 2021-04-16.
  23. ^ Habib, Shukry J.; Waizenegger, Thomas; Niewienda, Agathe; Paschen, Stefan A.; Neupert, Walter; Rapaport, Doron (2006-12-26). "The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins". Journal of Cell Biology. 176 (1): 77–88. doi:10.1083/jcb.200602050. ISSN 1540-8140.
  24. ^ Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron (2004-07). "Tob38, a novel essential component in the biogenesis of β‐barrel proteins of mitochondria". EMBO reports. 5 (7): 704–709. doi:10.1038/sj.embor.7400183. ISSN 1469-221X. {{cite journal}}: Check date values in: |date= (help)
  25. ^ Milenkovic, Dusanka; Kozjak, Vera; Wiedemann, Nils; Lohaus, Christiane; Meyer, Helmut E.; Guiard, Bernard; Pfanner, Nikolaus; Meisinger, Chris (2004-05). "Sam35 of the Mitochondrial Protein Sorting and Assembly Machinery Is a Peripheral Outer Membrane Protein Essential for Cell Viability". Journal of Biological Chemistry. 279 (21): 22781–22785. doi:10.1074/jbc.c400120200. ISSN 0021-9258. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  26. ^ Kutik, Stephan; Stojanovski, Diana; Becker, Lars; Becker, Thomas; Meinecke, Michael; Krüger, Vivien; Prinz, Claudia; Meisinger, Chris; Guiard, Bernard; Wagner, Richard; Pfanner, Nikolaus (2008-03). "Dissecting Membrane Insertion of Mitochondrial β-Barrel Proteins". Cell. 132 (6): 1011–1024. doi:10.1016/j.cell.2008.01.028. ISSN 0092-8674. {{cite journal}}: Check date values in: |date= (help); no-break space character in |title= at position 33 (help)
  27. ^ a b Chan, Nickie C.; Lithgow, Trevor (2008-01). "The Peripheral Membrane Subunits of the SAM Complex Function Codependently in Mitochondrial Outer Membrane Biogenesis". Molecular Biology of the Cell. 19 (1): 126–136. doi:10.1091/mbc.e07-08-0796. ISSN 1059-1524. {{cite journal}}: Check date values in: |date= (help)
  28. ^ Mertins, Barbara; Psakis, Georgios; Essen, Lars-Oliver (2014-12-01). "Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane". Biological Chemistry. 395 (12): 1435–1442. doi:10.1515/hsz-2014-0203. ISSN 1437-4315.
  29. ^ Campo, María Luisa; Peixoto, Pablo M.; Martínez-Caballero, Sonia (2017-02-01). "Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids". Journal of Bioenergetics and Biomembranes. 49 (1): 75–99. doi:10.1007/s10863-016-9662-z. ISSN 1573-6881.
  30. ^ Colombini, Marco (2012-12-12). "Mitochondrial Outer Membrane Channels". Chemical Reviews. 112 (12): 6373–6387. doi:10.1021/cr3002033. ISSN 0009-2665.
  31. ^ Hiller, S.; Garces, R. G.; Malia, T. J.; Orekhov, V. Y.; Colombini, M.; Wagner, G. (2008-08-29). "Solution Structure of the Integral Human Membrane Protein VDAC-1 in Detergent Micelles". Science. 321 (5893): 1206–1210. doi:10.1126/science.1161302. ISSN 0036-8075. PMC 2579273. PMID 18755977.{{cite journal}}: CS1 maint: PMC format (link)
  32. ^ Otera, Hidenori; Taira, Yohsuke; Horie, Chika; Suzuki, Yurina; Suzuki, Hiroyuki; Setoguchi, Kiyoko; Kato, Hiroki; Oka, Toshihiko; Mihara, Katsuyoshi (2007-12-31). "A novel insertion pathway of mitochondrial outer membrane proteins with multiple transmembrane segments". Journal of Cell Biology. 179 (7): 1355–1363. doi:10.1083/jcb.200702143. ISSN 1540-8140. PMC 2373507. PMID 18158327.{{cite journal}}: CS1 maint: PMC format (link)
  33. ^ a b Mårtensson, Christoph U.; Priesnitz, Chantal; Song, Jiyao; Ellenrieder, Lars; Doan, Kim Nguyen; Boos, Felix; Floerchinger, Alessia; Zufall, Nicole; Oeljeklaus, Silke; Warscheid, Bettina; Becker, Thomas (2019-05). "Mitochondrial protein translocation-associated degradation". Nature. 569 (7758): 679–683. doi:10.1038/s41586-019-1227-y. ISSN 0028-0836. {{cite journal}}: Check date values in: |date= (help)
  34. ^ Dimmer, K. S.; Papic, D.; Schumann, B.; Sperl, D.; Krumpe, K.; Walther, D. M.; Rapaport, D. (2012-03-30). "A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins". Journal of Cell Science. 125 (14): 3464–3473. doi:10.1242/jcs.103804. ISSN 0021-9533.
  35. ^ a b c d e f g Kühlbrandt, Werner (2015-10-29). "Structure and function of mitochondrial membrane protein complexes". BMC Biology. 13 (1): 89. doi:10.1186/s12915-015-0201-x. ISSN 1741-7007. PMC 4625866. PMID 26515107.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  36. ^ a b c Wohlrab, Hartmut (2009). "Transport proteins (carriers) of mitochondria". IUBMB Life. 61 (1): 40–46. doi:10.1002/iub.139. ISSN 1521-6551.
  37. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). "The Mitochondrion". Molecular Biology of the Cell. 4th edition.
  38. ^ a b c "The function of the respiratory supercomplexes: The plasticity model". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1837 (4): 444–450. 2014-04-01. doi:10.1016/j.bbabio.2013.12.009. ISSN 0005-2728.
  39. ^ "Protein translocation into mitochondria: the role of TIM complexes". Trends in Cell Biology. 10 (1): 25–31. 2000-01-01. doi:10.1016/S0962-8924(99)01684-0. ISSN 0962-8924.
  40. ^ Palmieri, Ferdinando; Scarcia, Pasquale; Monné, Magnus (2020-04-23). "Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review". Biomolecules. 10 (4). doi:10.3390/biom10040655. ISSN 2218-273X. PMC 7226361. PMID 32340404.{{cite journal}}: CS1 maint: unflagged free DOI (link)