The following is a demo of aligning integral lists.
Indefinite integrals are antiderivative functions. A constant (the constant of integration ) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
Integrals involving polynomials (NEW VERSION)
edit
∫
x
e
c
x
d
x
=
e
c
x
(
c
x
−
1
c
2
)
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
=
(
∂
∂
c
)
n
e
c
x
c
=
e
c
x
∑
i
=
0
n
(
−
1
)
i
n
!
(
n
−
i
)
!
c
i
+
1
x
n
−
i
=
e
c
x
∑
i
=
0
n
(
−
1
)
n
−
i
n
!
i
!
c
n
−
i
+
1
x
i
∫
e
c
x
x
d
x
=
ln
|
x
|
+
∑
n
=
1
∞
(
c
x
)
n
n
⋅
n
!
∫
e
c
x
x
n
d
x
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(for
n
≠
1
)
{\displaystyle {\begin{aligned}\int xe^{cx}\;\mathrm {d} x&=e^{cx}\left({\frac {cx-1}{c^{2}}}\right)\\\int x^{2}e^{cx}\;\mathrm {d} x&=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)\\\int x^{n}e^{cx}\;\mathrm {d} x&={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x=\left({\frac {\partial }{\partial c}}\right)^{n}{\frac {e^{cx}}{c}}=e^{cx}\sum _{i=0}^{n}(-1)^{i}\,{\frac {n!}{(n-i)!\,c^{i+1}}}\,x^{n-i}=e^{cx}\sum _{i=0}^{n}(-1)^{n-i}\,{\frac {n!}{i!\,c^{n-i+1}}}\,x^{i}\\\int {\frac {e^{cx}}{x}}\;\mathrm {d} x&=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}\\\int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x&={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\\\end{aligned}}}
Integrals involving polynomials (OLD VERSION)
edit
∫
x
e
c
x
d
x
=
e
c
x
(
c
x
−
1
c
2
)
{\displaystyle \int xe^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {cx-1}{c^{2}}}\right)}
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
{\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
=
(
∂
∂
c
)
n
e
c
x
c
=
e
c
x
∑
i
=
0
n
(
−
1
)
i
n
!
(
n
−
i
)
!
c
i
+
1
x
n
−
i
=
e
c
x
∑
i
=
0
n
(
−
1
)
n
−
i
n
!
i
!
c
n
−
i
+
1
x
i
{\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x=\left({\frac {\partial }{\partial c}}\right)^{n}{\frac {e^{cx}}{c}}=e^{cx}\sum _{i=0}^{n}(-1)^{i}\,{\frac {n!}{(n-i)!\,c^{i+1}}}\,x^{n-i}=e^{cx}\sum _{i=0}^{n}(-1)^{n-i}\,{\frac {n!}{i!\,c^{n-i+1}}}\,x^{i}}
∫
e
c
x
x
d
x
=
ln
|
x
|
+
∑
n
=
1
∞
(
c
x
)
n
n
⋅
n
!
{\displaystyle \int {\frac {e^{cx}}{x}}\;\mathrm {d} x=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}}
∫
e
c
x
x
n
d
x
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(for
n
≠
1
)
{\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}