Neoaves hypotheses.

Comparison

edit

Recent large phylogenomic studies of Neoaves have led to much progress on defining orders and supraordinal groups within Neoaves, even though they have failed to come to a consensus on an overall high order topology of these groups.[1][2][3][4] A genomic study of 48 taxa by Jarvis et al. (2014) divided Neoaves into two main clades, Columbea and Passerea, but an analysis of 198 taxa by Prum et al. (2015) recovered different groupings for the earliest split in Neoaves.[1][2] A reanalysis with an extended dataset by Reddy et al. (2017) suggested this was due to the type of sequence data, with coding sequences favouring the Prum topology.[3] The disagreement on topology even with large phylogenomic studies led Suh (2016) to propose a hard polytomy of nine clades as the base of Neoaves.[5] An analysis by Houde et al. (2019) recovered Columbea and a reduced hard polytomy of six clades within Passerea.[6]

Nevertheless, these studies do agree on a number of supraorderal groups, which Reddy et al. (2017) dubbed the "magnificent seven", which together with three "orphaned orders" make up Neoaves.[3] Significantly, they both include a large waterbird clade (Aequornithes) and a large landbird clade (Telluraves). The groups defined by Reddy et al. (2017) are as follows:

  • The "magnificent seven" supraordinal clades:
  1. Telluraves (landbirds)
  2. Aequornithes (waterbirds)
  3. Eurypygimorphae (sunbittern, kagu and tropicbirds)
  4. Otidimorphae (turacos, bustards and cuckoos)
  5. Strisores (nightjars, swifts, hummingbirds and allies)
  6. Columbimorphae (mesites, sandgrouse and pigeons)
  7. Mirandornithes (flamingos and grebes)

Phylogenies

edit


Jarvis-2014

edit

Source: Neoaves (11 December 2016))


One hypothesis for the phylogeny of modern birds was presented by Jarvis et al. (2014).[12] The following cladogram illustrates the proposed relationships, with some taxon names following Yury, T. et al. (2013).[13]

Neoaves
Columbea
Passerea
Otidae
Strisores

Caprimulgiformes (nightjars)

Steatornithiformes (oilbird)

Nyctibiiformes (potoos)

Podargiformes (frogmouths)

Aegotheliformes (owlet-nightjars)

Apodiformes (hummingbirds, treeswifts, and swifts)  

(Cypselomorphae)
Otidimorphae

Cuculiformes (cuckoos)  

Otidiformes (bustards)

Musophagiformes (turacos)

Gruae

Opisthocomiformes (hoatzin)

Gruimorphae

Gruiformes (rails and cranes)

Charadriiformes (shorebirds)

Ardeae
Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)  

Suliformes (boobies, cormorants, etc.)

Ciconiiformes (storks)  

Pelecaniformes (pelicans, herons, ibises, etc.) 

Eurypgimorphae

Eurypygiformes (sunbittern, kagu)

Phaethontiformes (tropicbirds)  

(core waterbirds)
Telluraves

Prum-2015

edit

Source: Neoaves (12 December 2017))

One hypothesis for the phylogeny of modern birds was presented by Prum, R.O. et al. (2015)[8] The following cladogram illustrates the proposed relationships, with some taxon names following Yury, T. et al. (2013).[14]

Neoaves
Strisores

Caprimulgiformes (nightjars)

Steatornithiformes (oilbird)

Nyctibiiformes (potoos)

Podargiformes (frogmouths)

Aegotheliformes (owlet-nightjars)

Apodiformes (hummingbirds, treeswifts, and swifts)  

Columbaves

Gruiformes (rails and cranes) 

Aequorlitornithes
Mirandornithes

Charadriiformes (waders and relatives) 

Eurypygimorphae

Phaethontiformes (tropicbirds) 

Eurypygiformes (sunbittern and kagu) 

Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)  

Ciconiiformes (storks)  

Suliformes (boobies, cormorants, etc.)

Pelecaniformes (pelicans, herons, ibises, etc.) 

(core waterbirds)
Inopinaves

Opisthocomiformes (hoatzin) 

Telluraves
Afroaves
Accipitrimorphae

Cathartiformes (New World vultures) 

Accipitriformes (hawks and relatives) 

Strigiformes (owls) 

Coraciimorphae

Coliiformes (mouse birds)

Eucavitaves

Leptosomatiformes (cuckoo roller)

Cavitaves

Trogoniformes (trogons) 

Picocoraciae

Bucerotiformes (hornbills and relatives) 

Coraciformes (kingfishers and relatives) 

Piciformes (woodpeckers and relatives) 

Australaves


References

edit
  1. ^ a b Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC 4405904. PMID 25504713.
  2. ^ a b Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. doi:10.1038/nature15697. ISSN 0028-0836. PMID 26444237.
  3. ^ a b c d Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Kingston, Sarah; Marks, Ben D.; Miglia, Kathleen J.; Moore, William S.; Sheldon, Frederick H.; Witt, Christopher C.; Yuri, Tamaki; Braun, Edward L. (2017). "Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling". Systematic Biology. 66 (5): 857–879. doi:10.1093/sysbio/syx041. ISSN 1063-5157. PMID 28369655.
  4. ^ Braun, Edward L.; Cracraft, Joel; Houde, Peter (2019). "Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era". Avian Genomics in Ecology and Evolution. pp. 151–210. doi:10.1007/978-3-030-16477-5_6. ISBN 978-3-030-16476-8.
  5. ^ a b Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta. 45: 50–62. doi:10.1111/zsc.12213. ISSN 0300-3256.
  6. ^ a b c Houde, Peter; Braun, Edward L.; Narula, Nitish; Minjares, Uriel; Mirarab, Siavash (2019). "Phylogenetic Signal of Indels and the Neoavian Radiation". Diversity. 11 (7): 108. doi:10.3390/d11070108. ISSN 1424-2818.
  7. ^ Cite error: The named reference jarvis2014 was invoked but never defined (see the help page).
  8. ^ a b Prum, R.O.; et al. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. Bibcode:2015Natur.526..569P. doi:10.1038/nature15697. PMID 26444237. S2CID 205246158. Cite error: The named reference "Prum2015" was defined multiple times with different content (see the help page).
  9. ^ Braun, E.L. & Kimball, R.T. (2021) Data types and the phylogeny of Neoaves. Birds, 2(1), 1-22; https://doi.org/10.3390/birds2010001
  10. ^ Cite error: The named reference Kuhletal2021 was invoked but never defined (see the help page).
  11. ^ Wua, Shaoyuan; Rheindt, Frank E.; Zhang, Jin; Wang, Jiajia; Zhang, Lei; Quan, Cheng; Li, Zhiheng; Wang, Min; Wu, Feixiang; Qu, Yanhua; Edwards, Scott V.; Zhou, Zhonghe; Liu, Liang (2024). "Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous". PNAS. 121 (8): e2319696121. doi:10.1073/pnas.2319696121.
  12. ^ Jarvis, E.D. et al. (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215):1320-1331.
  13. ^ Yuri et al. (2013) Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals. Biology, 2(1):419-444. doi:10.3390/biology2010419
  14. ^ Yuri et al. (2013) Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals. Biology, 2(1):419-444. doi:10.3390/biology2010419