User:Klaudia.darbinova/socio-ecological system

A socio-ecological system consists of a bio-geo-physical unit and its associated social actors and institutions. Socio-ecological systems are complex and adaptive and delimited by spatial or functional boundaries surrounding particular eco-systems and their problem context [1]


Definitions

edit

A socio-ecological system can be defined as [2](p.163):

1. A coherent system of biophysical and social factors that regularly interact in a resilient, sustained manner;
2. A system that is defined at several spatial, temporal, and organisational scales, which may be hierarchically linked;
3. A set of critical resources (natural, socioeconomic, and cultural) whose flow and use is regulated by a combination of ecological and social systems; and
4. A perpetually dynamic, complex system with continuous adaptation [3] [4] [5]

Scholars have used the concept of socio-ecological systems to emphasise the integrate concept of humans in nature and to stress that the delineation between social and ecological systems is artificial and arbitrary [6]. Whilst resilience has somewhat different meaning in social and ecological context [7], the SES approach holds that social and ecological systems are linked through feedback mechanisms, and that both display resilience and complexity [5].


Integrative approaches to Socio-Ecological Systems

edit

Until the past few decades, the point of contact between social sciences and natural sciences was very limited in dealing with socio-ecological systems. Just as mainstream ecology had tried to exclude humans from the study of ecology, many social science disciplines had ignored environment altogether and limited their scope to humans [5]. Although some scholars e.g.[8] had tried to bridge the nature-culture divide, the majority of studies focused on investigating processes within the social domain only, treating the ecosystem largely as a “black box” [9] and assuming that if the social system performs adaptively or is well organised institutionally it will also manage the environmental resource base in a sustainable fashion [10].

This changed through the 1970s and 1980s with the rise of several subfields associated with the social sciences but explicitly including the environment in the framing of the issues [5]. These subfields are:

• Environmental ethics, which arose from the need to develop a philosophy of relations between humans and their environment, because conventional ethics only applied to relations among people [9].
• Political ecology, which expands ecological concerns to respond to the inclusion of cultural and political activity within an analysis of ecosystems that are significantly but not always entirely socially constructed [11].
• Environmental history which arose from the rich accumulation of material documenting relationships between societies and their environment.
• Ecological economics which examines the link between ecology and economics by bridging the two disciplines to promote an integrated view of economics within the ecosystem [12].
• Common property which examines the linkages between resource management and social organisation, analysing how institutions and property rights systems deal with the dilemma of the ‘tragedy of the commons’ [13] [14]
• Traditional ecological knowledge, which refers to ecological understanding built, not by experts, but by people who live and use the resources of a place [15].


Each of the six areas summarised is a ‘bridge’ spanning different combinations of natural science and social science thinking [5].


Conceptual Foundations and Origins

edit

Although SES theory draws heavily on systems ecology and complexity theory it is not the same. The studies of SES include some central societal concerns (e.g. equity and human wellbeing) that have traditionally received little attention in complex adaptive systems theory, and there are areas of complexity theory (e.g. quantum physics) that have little direct relevance for understanding SES [16].

SES theory incorporates ideas from theories relating to the study of resilience, robustness, sustainability, and vulnerability e.g. [17] [5] [18] [19] [16], but it is also concerned with a wider range of SES dynamics and attributes than any one of these terms implies. While SES theory draws on a range of discipline-specific theories, such as island biogeography, optimal foraging theory, and microeconomic theory, it is much broader than any of these individual theories alone [16].

Being a relatively new concept, SES theory has emerged from a combination of disciplinary platforms [16] and the notion of complexity developed through the work of many scholars, notably the Santa Fe Institute (2002). It can thus be said that complex system theory is a more important intellectual parent of SES [19]. However, due to the social context in which SES research has been placed, and the possibility of SES research translating into recommendations that will affect real people, SES research has been considerable more ‘self- conscious’ and more ‘pluralistic’ in its perspectives than complexity theory has ever acknowledged [16].

Studying SESs from a complex system perspective is a fast growing interdisciplinary field which can be viewed as an attempt to link different disciplines into a new body of knowledge that can be applied to solve some of the most serious environmental problems today [16]. Management processes in the complex systems can be improved by making them adaptive and flexible, able to deal with uncertainty and surprise, and by building capacity to adapt to change. SESs are both complex and adaptive, meaning that they require continuous testing, learning about, and developing knowledge and understanding in order to cope with change and uncertainty [20].

A complex system differs from a simple system in that it has a number of attributes that cannot be observed in simple systems, such as nonlinearity, uncertainty, emergence, scale, and self-organisation [5] [21].

Nonlinearity

edit

Nonlinearity is related to fundamental uncertainty [5]. It generates path dependency, which refers to local rules of interaction that change as the system evolves and develops. A consequence of path dependency is the existence of multiple basins of attraction in ecosystem development and the potential for threshold behaviour and qualitative shifts in system dynamics under changing environmental influences [22].

Emergence

edit

Emergence is the appearance of behaviour that could not be anticipated from knowledge of the parts of the system alone [23].

Scale

edit

Scale is important when dealing with complex systems. In a complex system many subsystems can be distinguished; and since many complex systems are hierarchic, each subsystem is nested in a larger subsystem etc [24]. For example, a small watershed may be considered an ecosystem, but it is a part of a larger watershed that can also be considered an ecosystem and a larger one that encompasses all the smaller watersheds [5]. Phenomena at each level of the scale tend to have their own emergent properties, and different levels may be coupled through feedback relationships [25]. Therefore, complex systems should always be analysed or managed simultaneously at different scales.

Self organisation

edit

Self organisation is one of the defining properties of complex systems. The basic idea is that open systems will reorganise at critical points of instability. Holling’s adaptive renewal cycle is an illustration of reorganisation that takes place within the cycles of growth and renewal [25]. The self-organisation principle, operationalised through feedback mechanisms, applies to many biological systems, social systems and even to mixture of simple chemicals. High speed computers and nonlinear mathematical techniques help simulate self-organisation by yielding complex results and yet strangely ordered effects. The direction of self-organisation will depend on such things as the system’s history; it is path dependent and difficult to predict [5].


Examples of conceptual framework for analysis of SESs

edit
SES Framework
Conceptual Models of SES[10]

There are several conceptual frameworks developed in relation to the resilience approach.

a) A framework that focuses on knowledge and understanding of ecosystem dynamics, how to navigate it through management practices, institutions, organisations and social networks and how they relate to drivers of change [5].
b) A conceptual model in relation to the robustness of socio-ecological systems. There resource could be water or a fishery and the resource users could be farmers irrigating or inshore fishermen. Public infrastructure providers involve, for example, local users associations and government bureaus and public infrastructure include institutional rules and engineering works. The number refer to links between the entities and are exemplified in the source of the figure [26].


Role of traditional knowledge in SESs

edit

Berkes and colleagues [6] distinguish four sets of elements which can be used to describe socio-ecological system characteristics and linkages:

1. Ecosystems
2. Local knowledge
3. People and technology
4. Property rights institutions

Knowledge acquisition of SESs is an ongoing, dynamic learning process, and such knowledge often emerges with people’s institutions and organisations. To remain effective it requires institutional framework and social networks to be nested across scales [25] [5].. It is thus the communities which interact with ecosystems on the daily basis and over long periods of time that possess the most relevant knowledge of resource and ecosystem dynamics, together with associated management practices [27] [28].

Some scholars have suggested that management and governance of SESs may benefit from combination of different knowledge systems [29] [30] [31]; others have attempted to import such knowledge into the scientific knowledge field [32].

There also those who have argued that it would be difficult to separate these knowledge systems from their institutional and cultural contexts [33], and those who have questioned the role of traditional and local knowledge systems in the current situation of pervasive environmental change and globalised societies [34] [35]. Other scholars have claimed that valuable lessons can be extracted from such systems for complex system management; lessons that also need to account for interactions across temporal and spatial scales and organisational and institutional levels [36] [37], and in particular during periods of rapid change, uncertainty and system reorganisation [38].


Adaptive Cycle

edit
adaptive cycle
Adaptive Cycle[18]

The adaptive cycle, originally conceptualised by Holling (1986) interprets the dynamics of complex ecosystems in response to disturbance and change. In terms of its dynamics, the adaptive cycle has been described as moving slowly from exploitation (r) to conservation (K), maintaining and developing very rapidly from K to release (), continuing rapidly to reorganisation () and back to exploitation (r) [18]. Depending on the particular configuration of the system, it can then begin a new adaptive cycle or alternatively it may transform into a new configuration, shown as an exit arrow. The adaptive cycle is one of the five heuristics used to understand socio-ecological system behaviour [39]. The other four heuristics are: resilience, panarchy, transformability, and adaptability, are of considerable conceptual appeal, and it is claimed to be generally applicable to ecological and social systems as well as to coupled socio-ecological systems [18].

The two main dimension that determine changes in an adaptive cycle are connectedness and potential [18]. The connectedness dimension is the visual depiction of a cycle and stands for the ability to internally control its own destiny [40]. It “reflects the strength of internal connections that mediate and regulate the influences between inside processes and the outside world” [18] (p.50). The potential dimension is represented by the vertical axis, and stands for the “inherent potential of a system that is available for change” [40](p.393). Social or cultural potential can be characterised by the “accumulated networks of relationships-friendship, mutual respect, and trust among people and between people and institutions of governance” [18](p.49). According to the adaptive cycle heuristic, the levels of both dimensions differ during the course of the cycle along the four phases. The adaptive cycle thus predicts that the four phases of the cycle can be distinguished based on distinct combinations of high or low potential and connectedness.


Adaptive governance and SES

edit

The resilience of socio-ecological systems is related to the degree of the shock that the system can absorb and remain within a given state [41]. The concept of resilience is a promising tool for analysing adaptive change towards sustainability because it provides a way for analysing how to manipulate stability in the face of change.

In order to emphasise the key requirements of a socio-ecological system for successful adaptive governance, Folke and colleagues [42] contrasted case studies from the Florida Everglades and the Grand Canyon. Both are complex socio-ecological systems that have experiences unwanted degradation of their ecosystem services, but differ substantially in terms of their institutional make-up.

The governance structure in the Everglades is dominated by the interests of agriculture and environmentalists who have been in conflict over the need to conserve the habitat at the expense of agricultural productivity throughout history. Here, a few feedbacks between the ecological system and the social system exist, and the SES is unable to innovate and adapt (the α-phase of reorganisation and growth)

In contrast, different stakeholders have formed an adaptive management workgroup in the case of Grand Canyon, using planned management interventions and monitoring to learn about changes occurring in the ecosystem including the best ways to subsequently manage them. Such an arrangement in governance creates the opportunity for institutional learning to take place, allowing for a successful period of reorganisation and growth. Such an approach to institutional learning is becoming more common as NGOs, scientist and communities collaborate to manage ecosystems [41].


edit

The concept of socio-ecological systems has been developed in order to provide both a promising scientific gain as well as impact on problems of sustainable development (Jahn et al 2009). A close conceptual and methodological relation exists between the analysis of socio-ecological systems, complexity research, and transdisciplinarity. These three research concepts are based on similar ideas and models of reasoning. Moreover, the research on socio-ecological systems almost always uses transdisciplinary mode of operation in order to achieve an adequate problem orientation and to ensure integrative results [43].

Problems of sustainable development are intrinsically tied to the socio-ecological system defined to tackle them. This means that scientists from the relevant scientific disciplines or field of research as well as the involved societal stakeholders have to be regarded as elements of the socio-ecological system in question [43].


References

edit
  1. ^ Glaser, M., Krause, G., Ratter, B., and Welp, M. (2008) Human-Nature-Interaction in the Anthropocene. Potential of Social-Ecological Systems Analysis. [Website], Available from: <http://www.dg-humanoekologie.de/pdf/DGH-Mitteilungen/GAIA200801_77_80.pdf> [Assessed: 7 May 2011].
  2. ^ Redman, C., Grove, M. J. and Kuby, L. (2004). Integrating Social Science into the Long Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change. Ecosystems Vol.7(2), pp. 161-171.
  3. ^ Machlis, G.E., Force J.E, and. Burch, W.R Jr. (1997) The human ecosystem part I: The human ecosystem as an organizing concept in ecosystem management. Society and Natural Resources, Vol.10, pp.347-367.
  4. ^ Gunderson, L. H., and Holling C. S. (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA.
  5. ^ a b c d e f g h i j k l Berkes, F., Colding, J., and Folke, C. (2003) Navigating social–ecological systems: building resilience for complexity and change. Cambridge University Press, Cambridge, UK. Cite error: The named reference "Berkes et al 2003" was defined multiple times with different content (see the help page).
  6. ^ a b Berkes, F., Colding, J., and Folke, C. (2001) Linking Social-Ecological Systems. Cambridge: Cambridge University Press. Cite error: The named reference "Berkes et al 2001" was defined multiple times with different content (see the help page).
  7. ^ Adger, N. (2000) Social and ecological resilience: are they related? Progress in Human Geography, Vol. 24, pp. 347-364.
  8. ^ Bateson, G. (1979) Mind and Nature: A necessary unit. [Website], Available from: <http://www.oikos.org/mind&nature.htm> [Assessed: 12 May 2011].
  9. ^ a b Berkes, F., Colding, J., and Folke, C. (2001) Linking Social-Ecological Systems. Cambridge: Cambridge University Press. Cite error: The named reference "Berkes 2001" was defined multiple times with different content (see the help page).
  10. ^ a b Folke, C. (2006), Resilience : The emergence of a perspective for social-ecological systems analysis, Global Environmental Change, Vol. 16, pp. 253–267.
  11. ^ Greenberg, J.B and Park, TK. (1994) Political ecology. Journal of Political Ecology, Vol. 1 pp. 1-12.
  12. ^ Costanza R, Low BS, Ostrom E, Wilson J. (2001) Institutions, Ecosystems, and Sustainability. Boca Raton, FL: Lewis
  13. ^ McCay, B.J. and Acheson, J.M. (1987) The Question of the Cotntnons. The Culture andEcology of Comtnunal Resources. Tucson: The University of Arizona Press.
  14. ^ Berkes, F. (1989) Common Property Resources: Ecology and Comtnunity-Based Sustainable Development. London: Belhaven Press.
  15. ^ Warren, DM., Slikkerveer, LJ., Brokensha, D. (1995) The Cultural Dimension of Development: Indigenous Knowledge System. London: Intermediate Technology Publications.
  16. ^ a b c d e f Cumming, G.S. (2011), Spatial Resilience in Social-Ecological Systems, Springer, London.
  17. ^ Levin, S. A. (1999). Fragile dominion: Complexity and the commons. Reading, MA: Perseus Books.
  18. ^ a b c d e f g Gunderson, L. H., and Holling C. S. (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA.
  19. ^ a b Norberg, J., & Cumming, G. S. (2008). Complexity theory for a sustainable future. New York: Columbia University Press.
  20. ^ Carpenter, S. R., and Gunderson, L. H. (2001) Coping with collapse: ecological and social dynamics in ecosystem management. BioScience, Vol.51, pp. 451–457.
  21. ^ Norberg, J., & Cumming, G. S. (2008). Complexity theory for a sustainable future. New York: Columbia University Press.
  22. ^ Levin, S. A. (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems Vol.1, pp. 431–436.
  23. ^ Centre for Complex Systems Science (2011), Complexity in Socio-ecological systems. [Website], Available from: <http://www.csiro.au/science/ComplexSocial-EcologicalSystems.html> [Assessed: 15 May 2011].
  24. ^ Allen T.F.H. and Starr T.B. (1982). Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago.
  25. ^ a b c Gunderson, L. H., and Holling C. S. (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA.
  26. ^ Andeies, J.M., Janssen, M.A., Ostrom, E. (2004). A framework to analyze the robustness of social-ecological systems from an institutional perspective. Ecology and Society, Vol.9 (1), p.18 ,Available from: <www.ecologyandsociety.org/vol9/iss1/art18/>.
  27. ^ Berkes, F., Colding, J., and Folke, C. (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications, Vol.10, pp.1251–1262.
  28. ^ Fabricius, C., and Koch, E. (2004). Rights, resources and rural development: community-based natural resource management in Southern Africa. Earthscan, London, UK.
  29. ^ McLain, R., and R. Lee. (1996) Adaptive management: promises and pitfalls. Journal of Environmental Management, Vol. 20, pp.437–448.
  30. ^ Johannes, R. E. (1998) The case of data-less marine resource management: examples from tropical nearshore finfisheries. Trends in Ecology and Evolution, Vol. 13, pp. 243–246.
  31. ^ Ludwig, D., Mangel, M., and Haddad, B. (2001) Ecology, conservation, and public policy. Annual Review of Ecology and Systematics, Vol. 32, pp. 481–517.
  32. ^ Mackinson, S., and Nottestad, L.( 1998) Combining local and scientific knowledge. Reviews in Fish Biology and Fisheries, Vol. 8, pp.481–490.
  33. ^ Berkes, F. (1999) Sacred ecology: traditional ecological knowledge and management systems. Taylor & Francis, Philadelphia and London, UK.
  34. ^ Krupnik, I., and Jolly, D. (2002) The Earth is faster now: indigenous observation on Arctic environmental change. Arcus, Fairbanks, Alaska, USA.
  35. ^ du Toit, J. T., Walker, B. H., and Campbell, B. M. (2004) Conserving tropical nature: current challenges for ecologists. Trends in Ecology and Evolution, Vol.19, pp.12–17.
  36. ^ Barrett, C. B., Brandon, K., Gibson, C., and Gjertsen, H. (2001) Conserving tropical biodiversity amid weak instiutions. BioScience , Vol. 51, pp. 497–502.
  37. ^ Pretty, J., and Ward, H. (2001) Social capital and the environment. World Development, Vol. 29, pp. 209–227.
  38. ^ Berkes, F., and Folke, C.. 2002. Back to the future: ecosystem dynamics and local knowledge. Pages 121–146 in L. H. Gunderson and C. S. Holling, editors. Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA.
  39. ^ Walker, B. H., Gunderson L. H., Kinzig, A. P., Folke, C., Carpenter, S. R., and. Schultz, L (2006) A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecology and Society 11(1): 13. [Website] Available from: <http://www.ecologyandsociety.org/vol11/iss1/art13/> [Assessed: 12 May 2011].
  40. ^ a b Holling, C. S. (2001) Understanding the complexity of economic, ecological, and social systems, Ecosystems, Vol.4(5), pp.390-405.
  41. ^ a b Evans, J. (2011). Environmental Governance, Rutledge, London.
  42. ^ Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L. Holling, C. and Walker, B. (2002) Resilience and sustainable development: building adaptive capacity in a world of transformations, Ambio, Vol.31, pp. 437-440.
  43. ^ a b Jahn, T., Becker, E., Keil, F., and Schramm. E., (2009), Understanding Social-Ecological Systems: Frontier Research for Sustainable Development. Implications for European Research Policy. Institute for Social-Ecological Research (ISOE), Frankfurt/Main, Germany.







Network governance (also called “network organization” [1], “networks forms of organization” [2], “interfirm networks”, “organization networks” [3],” flexible specialization” [4] , “network-centric organisation” and “quasi-firms” [5]) is "interfirm coordination that is characterized by organic or informal social system, in contrast to bureaucratic structures within firms and formal contractual relationships between them [6]. The concepts of privatization, public private partnership, and contracting are defined in this context.

Network governance constitutes a “distinct form of coordinating economic activity” [2] (p.301) which contrasts and competes with markets and hierarchies [6]. As such, governance networks distinguish themselves from the hierarchical control of the state and the competitive regulation of the market in at least three ways: [7]

  1. In terms of the relationship between the actors, governance networks can be described as a "pluricentric governance system" as opposed to the "unicentric system of state rule and the multicentric system of market competition" [8](p.151). In contrast to state rule and competitive market regulation, governance networks involve a large number of interdependent actors who interact in order to produce public purpose. [7]
  2. In terms of decision making, governance networks are based on negotiation rationality as opposed to the substantial rationality that governs state rule and the procedural rationality that governs market competition [9] (p.46)
  3. Compliance is ensured through trust and political obligation which, over time, becomes sustained by self-constituted rules and norms. [10]

As a concept, Network Governance explains increased efficiency and reduced agency problems for organizations existing in highly turbulent environments. On the one hand, the efficiency is enhanced through distributed knowledge acquisition and decentralised problem solving; on the other, the effectiveness is improved through the emergence of collective solutions to global problems in different self-regulated sectors of activity. [11] Due to the rapid pace of modern society and competitive pressures from globalization, network governance has gained prominence and development among sociological theorists.

Network governance first depends on the comprehension of the short and long term global business risks. It’s based on the definition of the IT key objectives and their influence on the network. It includes the negotiation of the satisfaction criteria for the business lines and integrates processes for the measurement and improvement of the global efficiency and end user satisfaction. Beyond that, it allows the constitution and piloting of internal teams and external partners as well as the setting up of a control system enabling to validate the performance of the whole. Finally, it ensures permanent communication at all the various management levels.

In the public sector, network governance is not universally accepted as a positive development by all public administration scholars. Some doubt its ability to adequately perform as a democratic governance structure while others view it as phenomenon that promotes efficient and effective delivery of public goods and services.


Definition and Theories

edit

Governance networks have been defined by Sorensen and Torfing [7] as:

  • "a relatively stable horizontal articulation of interdependent, but operationally autonomous actors
  • who interact through negotiations that involve bargaining, deliberation and intense power struggles
  • which take place within a relatively institutionalized framework of contingently articulated rules, norms, knowledge and social imaginations
  • that is self-regulating within limits set by external agencies and
  • which contribute to the production of public purpose in the broad sense of visions, ideas, plans and regulations."(p.3)

With this definition in mind, Sorenson and Torfing identify four points of democratic anchorage for use in assessing the democratic performance of a governance network. These points are the extent to which the network:

  1. "is controlled by democratically elected politicians;
  2. represents the membership basis of the participating groups and organizations;
  3. is accountable to the territorially defined citizenry; and
  4. follows the democratic rules specified by a particular grammar of conduct."


Role in Environmental Governance

edit

In the wake of apparent failures to govern complex environmental problems by the central state, “new” modes of governance have been proposed in recent years. [12] Network governance is the mode most commonly associated with the concept of governance, in which autonomous stakeholders work together to achieve common goals.

The emergence of network governance can be characterised by an attempt to take into account the increasing importance of NGOs, the private sector, scientific networks and international institutions in the performance of various functions of governance. [13] Prominent examples of such networks that have been instrumental in forming successful working arrangements are the World Commission on Dams, the Global Environmental Facility and the flexible mechanism of the Kyoto Protocol. [14] Another ongoing effort is the United Nations Global Compact which combines multiple stakeholders in a trilateral construction including representatives from governments, private sector and the NGO community. [15] (p.6)

One main reason for the proliferation of network approaches in environmental governance is their potential to integrate and make available different sources of knowledge and competences and to encourage individual and collective learning. [15] [11] Currently, environmental governance faces various challenges that are characterised by complexities and uncertainties inherent to environmental and sustainable problems. [16] Network governance can provide a means to address these governance problems by institutionalising learning on facts and deliberation on value judgements. [17] For example, in the realm of global chemical safety, transnational networks have formed around initiatives by international organisations and successfully developed rules for addressing global chemical issues many of which have been implemented by national legislations. Most notably, these transnational networks made it possible to avoid the institutional apathy that is typically found in political settings with many actors of conflicting interests, especially on a global level. [18]

Through integration of actors from different sectors, governance networks are able to provide an innovative environment of learning, laying the way for adaptive and effective governance. [11] One particular form of networks important to governance problems is ‘epistemic communities’ in which actors share the same basic casual beliefs and normative values. [19] (p.3) Although participation in these epistemic communities requires an interest in the problem at stake, the actors involved do not necessarily share the same interest. In general, the interests are interdependent but can also be different or sometimes contesting, stressing the need for consensus building and the development of cognitive commodities. [12] (p.26)

The main argument in the literature for the advantage of network governance over traditional command and control regulation or, alternatively, recourse to market regulation, is its capacity to deal with situations of intrinsic uncertainty and decision making under bounded rationality. [15] This is typically the case in the field of global environmental governance where one has to deal with complex and interrelated problems. In these situations, network institutions can create a synergy between different competences and sources of knowledge allowing dealing with complex and interlined problems. [11]

References

edit
  1. ^ Miles, R. E. & Snow, C. C. 1986. Organizations: New concepts for new forms. California Management Review. 28(3): 62-73
  2. ^ a b Powell, W.W. 1990. Neither market nor hierarchy: Network forms of organizing. in B. Staw & L.L. Cummings (Eds.), Research in organizational behavior: pp. 295-336. Greenwich, CT: JAI.
  3. ^ Uzzi, B. 1996. The sources and consequences of embeddedness for the economic performance of organizations: The network effect. American Sociological Review, 61(4): 674-698.
  4. ^ Piore, M.J. & Sabel, C.F. 1984. The second industrial divide. New York: Basic Books.
  5. ^ Eccles, R.G. 1981. The quasifirm in the construction industry. Journal of Economic Behavior and Organization, 2(4): 335-357
  6. ^ a b Jones,C., Hesterly, W.S., and Borgatti, S.P. 1997. A general theory of network governance: exchange conditions and social mechanisms. Academy of Management Journal 22(4): 911-945. [online] URL: http://www.jstor.org/stable/259249
  7. ^ a b c Sorensen, E. and Torfing, J. 2005. "The Democratic Anchorage of Governance Networks", Scandinavian Political Studies. 28(3): 195-218.
  8. ^ Kersbergen, K. van & Waarden, F. van 2004.Governance as a Bridge between Disciplines: Cross-disciplinary Inspiration Regarding Shifts in Governance and Problems of Governability, Accountability and Legitimacy. European Journal of Political Research, 43(2): 143–71.
  9. ^ Scharpf, F. W. 1997. Games Real Actors Play: Actor-centered Institutionalism in Policy Research.Oxford: West View Point.
  10. ^ Nielsen, K. & Pedersen, O. K. 1988. ‘The Negotiated Economy: Ideal and History’, Scandinavian Political Studies, 11(2): 79–101.
  11. ^ a b c d Dedeurwaerdere, T. 2007. The contribution of network governance to sustainability impact assessment. pp. 209–228 in S. Thoyer and B. Martimort-Asso, editors. Participation for sustainability in trade. Ashgate, Surrey, UK.
  12. ^ a b Newig, J., D. Günther, and C. Pahl-Wostl. 2010. Synapses in the network: learning in governance networks in the context of environmental management. Ecology and Society 15(4): 24. [online] URL: http://www.ecologyandsociety.org/vol15/iss4/art24/
  13. ^ Dedeurwaerdere, T. 2005. The contribution of network governance to sustainable development. [online] URL: http://www.iddri.org/Activites/Seminaires-reguliers/s13_dedeurwaerdere.pdf
  14. ^ Streck, C. 2002. “Global Public Policy Networks as Coalitions for Change” in D.C. Esty and M.H. Ivanova (eds), Global Environmental Governance, Options and Opportunitites, Yale School of Forestry and Environmental Studies, New Haven pp. 121-140.
  15. ^ a b c Haas, P. M. 2004. Addressing the global governance deficit. Global Environmental Politics 4(4): 1–15.
  16. ^ Newig, J., J.-P. Voß, and J. Monstadt, editors. 2008. Governance for sustainable development: steering in contexts of ambivalence, uncertainty and distributed power. Routledge, London, UK.
  17. ^ Head, B. W. 2008. Assessing network-based collaborations: effectiveness for whom? Public Management Review 10(6): 733–749.
  18. ^ Warning, M. 2006. Transnational bureaucracy networks: a resource of global environmental governance? pp. 305–329 in G. Winter, (eds) Multilevel governance of global environmental change: perspectives from science, sociology and the law. Cambridge University Press, Cambridge, UK. [e-book] URL: http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511720888&cid=CBO9780511720888A025
  19. ^ Haas, P. M. 1992. Introduction: epistemic communities and international policy coordination. Pages 1–35 in P. M. Haas, editor. Knowledge, power, and international policy coordination. University of South Carolina Press, Columbia, South Carolina, USA.


Other Literature

edit

Van Alstyne, M. 1997. The State of Network Organization: A Survey in Three Frameworks. Journal of Organizational Computing 7(3) pp 88-151. [online] URL:http://ccs.mit.edu/papers/CCSWP192/CCSWP192.html

IFCS Intergovernmental Forum on Chemical Safety. 2011. [online] URL: http://www.who.int/ifcs/en/