The purpose of this subpage is to have at hand various books for citation. If you find here any mistakes or something missing (ISBN etc.) feel free to correct it. --Kompik 09:49, 12 February 2007 (UTC)

In some cases, I have used Google books, but I do have most of the books listed here. In case you do not have some book listed here and you need something from it, feel free to contact me (by email or on my talk page). --Kompik (talk) 08:12, 28 May 2008 (UTC)

Other sources

edit

Other users

edit
  • Mumford, David (1999). The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians (2nd ed.). Springer-Verlag. doi:10.1007/b62130. ISBN 354063293X.

Books

edit

Category theory

edit

Discrete mathematics

edit

Functional analysis

edit

Templates: {{Aliprantis Border Infinite Dimensional Analysis A Hitchhiker's Guide Third Edition}}, {{{Rudin Walter Functional Analysis|edition=2}}

Functional equations

edit
  • Kuczma, Marek (2009). An introduction to the theory of functional equations and inequalities. Cauchy's euqation and Jensen's inequality. Basel: Birkhäuser. ISBN 9783764387495.
  • Kuczma, Marek (1968). Functional equations in a single variable. Warszawa: PWN.
  • Kuczma, Marek; Choczewski, Bogdan; Ger, Roman (1990). Iterative functional equations. Cambridge: Cambridge University Press. ISBN 0521355613.

General topology

edit

Templates: {{Dixmier General Topology}}, {{Kelley General Topology}}, {{Willard General Topology}}

  • Engelking, Ryszard (1968). Outline of General Topology. translated from Polish. North-Holland, Amsterdam.
  • Gähler, Werner (1977). Grundstrukturen der Analysis I. Akademie-Verlag, Berlin.

Linear algebra

edit

Number theory

edit

Templates: {{Hardy and Wright}}

  • Andreescu, Titu; Andrica, Dorin; Cucurezeanu, Ion (2010). An Introduction to Diophantine Equations. A Problem-Based Approach. New York: Springer. ISBN 0817645489.
  • H. H. Ostmann (1956). Additive Zahlentheorie I (in German). Berlin-Göttingen-Heidelberg: Springer-Verlag.
  • G. Tenenbaum (1995). Introduction to analytic and probabilistic number theory. Cambridge: Cambridge Univ. Press.

Representation theory

edit

Templates: {{Fulton-Harris}}

Semigroups

edit
  • Clifford, Alfred Hoblitzelle; Preston, Gordon Bamford (1972). The Algebraic Theory of Semigroups. Russian translation. Moskva: Mir.

Set Theory

edit
  • Holz, Michael; Steffens, Karsten; Weitz, Edmund (1999). Introduction to Cardinal Arithmetic. Birkhäuser. ISBN 3764361247.

Summability Theory

edit
  • Boos, Johann (2000). Classical and modern methods in summability. New York: Oxford University Press. ISBN 019850165X.

Various

edit
  • Knopp, Konrad (1922). Theorie und Anwendung der unendlichen Reihen. Berlin: Verlag von Julius Springer.
  • Rajwade, A. R. (1993). Squares. Cambridge University Press. ISBN 0521426685.
  • Tignol, Jean-Pierre (2001). Galois' Theory of Algebraic Equations. Singapore: World Scientific. ISBN 981-02-4541-6.

print.google

edit

Papers

edit
  • Arhangel'skiĭ, A. V.; Franklin, S. P. (1968). "Ordinal invariants for topological spaces". Michigan Math. J. 15 (3): 313–320. doi:10.1307/mmj/1029000034.
  • Anne C. Davis (1955). "A characterization of complete lattices". Pacific J. Math. 5: 311–319.
  • B. Knaster (1928). "Un theorème sur les fonctions d'ensembles". Ann. Soc. Polon. Math. 6: 133–134.
  • Peter Komjath (1997). "Review: Tomek Bartoszynski, Haim Judah, Set Theory. On the Structure of the Real Line". J. Symbolic Logic. 62 (2): 321–323. JSTOR 2275745.


  • van Mill, Jan (1984), "An introduction to  ", in Kunen, Kenneth; Vaughan, Jerry E. (eds.), Handbook of Set-Theoretic Topology, North-Holland, pp. 503–560, ISBN 0444865802
edit

Other

edit
  • Keffe, Simon P. (2003). The Cambridge Companion to Mozart. Cambridge University Press. ISBN 0521001927.