The Generalized Pareto Distributions
editNote: Most of the material below has been added to Pareto distribution. See the current revision of the article Pareto distribution and the Talk page Talk:Pareto distribution.
There is a hierarchy [1][2] of Pareto Distributions known as Pareto Type I, II, III, IV, and Feller-Pareto distributions.[3] Pareto Type IV contains Pareto Type I and II as special cases. The Feller-Pareto[4][2] distribution generalizes Pareto Type IV.
Pareto Types I-IV
editThe Pareto distribution hierarchy is summarized in the table comparing the survival distributions (complementary CDF). The Pareto distribution of the second kind is also known as the Lomax distribution,[5]
Support | Parameters | ||
---|---|---|---|
Type I | |||
Type II | |||
Lomax | |||
Type III | |||
Type IV |
The shape parameter α is the tail index, μ is location, xm is scale, 'γ is an inequality parameter. Some special cases of Pareto Type (IV) are:
- and
Feller-Pareto distribution
editFeller[6][2] defines a Pareto variable by transformation of a beta random variable Y, where the probability density function of Y is
where B( ) is the beta function.
When W has the Lomax distribution, and is a generalization of P(IV).
Properties
editExistence of the mean, and variance depend on the tail index α (inequality index γ). In particular, fractional δ-moments exist for some δ>0, as shown in the table below, where δ is not necessarily an integer.
Condition | Condition | |||
---|---|---|---|---|
Type I | ||||
Type II | ||||
Type III | ||||
Type IV |
Notes
edit- ^ Arnold (1983), p. 45 (3.2.2).
- ^ a b c Johnson, Kotz, and Balakrishnan (1994), page 575, (20.4). Cite error: The named reference "jkb94" was defined multiple times with different content (see the help page).
- ^ See Johnson, Kotz, and Balakrishnan (1994), Ch. 20, Arnold (1983), Ch. 3, and Kleiber and Kotz (2003), Ch. 3.
- ^ Feller, W. (1971). An Introduction to Probability Theory and its Applications, 2 (Second edition), New York: Wiley.
- ^ Lomax, K. S. (1954). Business failures. Another example of the analysis of failure data. Journal of the American Statistical Association, 49, 847–852.
- ^ Feller, W. (1971). An Introduction to Probability Theory and its Applications, 2 (Second edition), New York: Wiley.
References
edit- N. L. Johnson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate Distributions Volume 1, Second Edition, Wiley.
- Barry C. Arnold (2011). "Chapter 7: Pareto and Generalized Pareto Distributions". In Duangkamon Chotikapanich (ed.). Modeling Distributions and Lorenz Curves. New York: Springer. ISBN 9780387727967.
{{cite book}}
: Text "." ignored (help) - Arnold, B. C. and Laguna, L. (1977). On generalized Pareto distributions with applications to income data. Ames, Iowa: Iowa State University, Department of Economics.
{{cite book}}
: Text "." ignored (help)CS1 maint: multiple names: authors list (link)