Home
Random
Nearby
Log in
Settings
Donate
About Wikipedia
Disclaimers
Search
User
:
Msiddalingaiah/BJT transition frequency
User page
Talk
Language
Watch
Edit
<
User:Msiddalingaiah
From Millman and Grabel second edition, page 465
I
b
=
V
π
[
1
r
π
+
s
(
C
π
+
C
μ
)
]
{\displaystyle I_{b}=V_{\pi }\left[{\frac {1}{r_{\pi }}}+s(C_{\pi }+C_{\mu })\right]}
I
c
=
V
π
(
g
m
−
s
C
μ
)
{\displaystyle I_{c}=V_{\pi }(g_{m}-sC_{\mu })}
g
m
r
π
=
β
o
{\displaystyle g_{m}r_{\pi }=\beta _{o}}
β
(
s
)
=
I
c
I
b
=
β
o
(
1
−
s
C
μ
g
m
)
1
+
s
(
C
π
+
C
μ
)
r
π
{\displaystyle \beta (s)={\frac {I_{c}}{I_{b}}}={\frac {\beta _{o}(1-{\frac {sC_{\mu }}{g_{m}}})}{1+s(C_{\pi }+C_{\mu })r_{\pi }}}}
β
(
s
)
=
β
o
(
1
−
s
ω
z
)
1
+
s
ω
β
{\displaystyle \beta (s)={\frac {\beta _{o}(1-{\frac {s}{\omega _{z}}})}{1+{\frac {s}{\omega _{\beta }}}}}}
ω
z
=
g
m
C
μ
{\displaystyle \omega _{z}={\frac {g_{m}}{C_{\mu }}}}
ω
β
=
1
r
π
(
C
π
+
C
μ
)
{\displaystyle \omega _{\beta }={\frac {1}{r_{\pi }(C_{\pi }+C_{\mu })}}}
Assuming single pole response (ignore the zero):
β
(
s
)
=
β
o
1
+
s
ω
β
{\displaystyle \beta (s)={\frac {\beta _{o}}{1+{\frac {s}{\omega _{\beta }}}}}}
ω
T
=
β
o
ω
β
{\displaystyle \omega _{T}=\beta _{o}\omega _{\beta }}
f
T
=
β
o
f
β
{\displaystyle f_{T}=\beta _{o}f_{\beta }}
f
T
=
g
m
2
π
(
C
π
+
C
μ
)
{\displaystyle f_{T}={\frac {g_{m}}{2\pi (C_{\pi }+C_{\mu })}}}
g
m
=
I
c
q
V
T
=
I
c
q
26
m
V
{\displaystyle g_{m}={\frac {I_{cq}}{V_{T}}}={\frac {I_{cq}}{26mV}}}
f
T
=
I
c
q
2
π
(
C
π
+
C
μ
)
V
T
{\displaystyle f_{T}={\frac {I_{cq}}{2\pi (C_{\pi }+C_{\mu })V_{T}}}}