One of the very important aspects of quantum mechanics is the occurence of--in general--non-commuting operators which represent observables, quantities that we can measure. A standard example of a set of such operators are the three components of the angular momentum operators, which are crucial in many quantum systems. These operators are complicated, and we would like to be able to find a simpler representation, which can be used to generate approximate calculational schemes.
The original[1] [2] transformation in quantum mechanics is a mapping from the angular momentum operators to boson creation and annihilation operators. This method has found wide-spread applicability and has been extended in many different directions. There is a close link to other methods of boson mapping of operator algebras; in particular the Holstein-Primakoff[3] technique, and to a lesser extent the Schwinger mapping[4]. There is a close link to the theory of (generalized) coherent states in Lie algebras.
The basic technique
editThe basic idea can be illustrated for the classical example of the angular momentum operators of quantum mechanics. For any set of right-handed orthogonal axes we can define the components of this vector operator as , and , which are mutually noncommuting, i.e, and cyclic permutations. In order to uniquely specify the states of a spin, we can diagonalise any set of commuting operators. Normally we use the SU(2) Casimir operators and , which leads to states with the quantum numbers :
The projection quantum number takes on all the values .
We look at a single particle of spin (i.e., we look at a single irreducible representation of SU(2)). Now take the state with minimal projection , the extremal weight state as a vacuum for a set of boson operators, and each subsequent state with higher projection quantum number as a boson excitation of the previous one,
Each added boson then corresponds to a decrease of in the spin projection. The spin raising and lowering operators and , which satisfy:
therefore correspond (in some sense) to the bosonic annihilation and creation operators.
The precise relations between the operators must be chosen to ensure the correct commutation relations for the angular momentum operators. The Dyson transformation can be written as:
Physical Subspace
editThe crucial difficulty with any of the boson mapping techniques is the fact that we have a physical and unphysical space: Any states with more that bosons is a perfect bosonic state, but does not correspond to an angular momentum eigenstate; this is much more difficult in the case of the Dyson mapping than in the case of the Holstein-Primakoff one. We here have no "square-root from a negative number" to warn us.
References
edit- ^ Dyson
- ^ Male'ev
- ^ T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 - 1113 (1940) http://link.aps.org/doi/10.1103/PhysRev.58.1098 DOI: 10.1103/PhysRev.58.1098
- ^ J. Schwinger, Quantum theory of angular momentum, Academic Press, New York (1965)