Article Draft
editLead
editBiodiversity plays a vital role in maintaining human and animal health because numerous plants, animals, and fungi are used in medicine to produce vital vitamins, painkillers, antibiotics, and other medications.[1][2][3] Natural products have been recognized and used as medicines by ancient cultures all around the world.[4] Some animals are also known to self-medicate using plants and other materials available to them.[5]
Article body
editPlant drugs
editMany plant species have been studied thoroughly for their value as a source of medicine.[6][7] They have a wide range of benefits such as anti-fever and anti-inflammatory properties, can treat diseases such as malaria and diabetes, and are used as vitamins and antibiotic and antifungal medications.[7][8][9][10] More than 60% of the world's population relies almost entirely on plant medicine for primary health care,[11] and about 119 pure chemicals such as caffeine, methyl salicylate, and quinine are extracted from less than 90 species of higher plants and used as medicines throughout the world.[4]
Sweet wormwood
editSweet Wormwood (Artemisia annua) grows in all continents besides Antarctica.[12] It is the only known source of artemisinin, a drug that has been used to treat fevers due to malaria, exhaustion, or many other causes, since ancient times.[13] Upon further study, scientists have found that Sweet Wormwood inhibits activity of various bacteria, viruses, and parasites and exhibits anti-cancer and anti-inflammatory properties.[13][14][15]
Animal-derived drugs
editAnimal-derived drugs are a major source of modern medications used around the world.[2][16] The use of these drugs can cause certain animals to become endangered or threatened; however, it is difficult to identify the animal species used in medicine since animal-derived drugs are often processed, which degrades their DNA.[2]
Medicinal Animal Horns and Shells
editCells from animal horns and shells are included in a group of medications call Medicinal Animal Horns and Shells (MAHS).[2][17] These drugs are often used in dermatology and have been reported to have anti-fever and anti-inflammatory properties and treat some diseases.[17][18]
Drugs derived from animal toxins
editCertain animals have obtained many adaptations of toxic substances due to a coevolutionary arms race between them and their predators.[19] Some components of these toxins such as enzymes and inorganic salts are used in modern medicine.[20] For example, drugs such as Captopril and Lisinopril are derived from snake venom and inhibit the angiotensin-converting enzyme.[20][21] Another example is Ziconotide, a drug from the cone snail, Conus magus, that is used to reduce pain.[20][22]
Medicinal fungi
editEdible fungi can contain important nutrients and biomolecules that can be used for medical applications.[3] For example, medicinal fungi have polysaccharides that can be used to prevent the spread of cancer by activating different types of immune cells (namely T lymphocytes, macrophages, and NK cells), which inhibit cancer cell reproduction and metastasis (the process by which cancer can spread to different parts of the body).[3][23]
Fungi have been used to make many antibiotics since Sir Alexander Flemming discovered Penicillin from the mold, Penicillium notatum.[24][25] Recently, there has been a renewed interest in using fungi to create antibiotics since many bacteria have obtained antibiotic resistance due to the heavy selection pressures that antibiotics cause.[24] The diversity of marine fungi makes them a potential new source of antibiotic compunds; however, most are difficult to cultivate in a laboratory setting.[24][26]
Countries in Asia such as Egypt and China have been using fungi for medical uses for centuries.[3][23]
Turkey Tail Mushrooms
editToxoplasmosis is a disease caused by an infection by the parasite: Toxoplasma gondii (T. gondii).[27][28] Current drugs used to treat this disease have many side effects and do not inhibit all forms of T. gondii.[29] An in vitro study by Sharma et al. suggests that Turkey Tail mushroom extract could be used to treat Toxoplasmosis since it inhibited T. gondii growth.[27]
Pestalone
editPestalone is an antibiotic created from the marine fungus: Pestalotia sp.[24][30] M. Cueto et al. (2001–11) found that it has antibiotic activity against two bacteria species that have gained resistance to antibiotics: vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus.[31]
Zoopharmacognosy
editZoopharmacognosy is the study of how animals select certain plants as self-medication to treat or prevent disease.[5] Usually, this behavior is a result of coevolution between the animal and the plant that it uses for self-medication.[5] For example, apes have been observed selecting a particular part of a medicinal plant by taking off leaves and breaking the stem to suck out the juice.
References
edit- ^ Fajinmi, Olufunke O.; Olarewaju, Olaoluwa O.; Van Staden, Johannes (2023-03-03). "Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa". Plants. 12 (5): 1174. doi:10.3390/plants12051174. ISSN 2223-7747.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b c d Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe (2011-09-09). "Application of 12S rRNA Barcodes for the Identification of Animal-Derived Drugs". Journal of Pharmacy & Pharmaceutical Sciences. 14 (3): 358. doi:10.18433/J3N017. ISSN 1482-1826.
- ^ a b c d Xu, Jing; Shen, Rui; Jiao, Zhuoya; Chen, Weidong; Peng, Daiyin; Wang, Lei; Yu, Nianjun; Peng, Can; Cai, Biao; Song, Hang; Chen, Fengyuan; Liu, Bin (2022-06-24). "Current Advancements in Antitumor Properties and Mechanisms of Medicinal Components in Edible Mushrooms". Nutrients. 14 (13): 2622. doi:10.3390/nu14132622. ISSN 2072-6643.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b N.R. Farnsworth. Screening Plants for New Medicine. IN: E.O Wilson, editor. 1988. Biodiversity, Natrional Academy. ISBN 0-309-03783-2(pbk.)
- ^ a b c Robles, Mario; Aregullin, Manuel; West, Jan; Rodriguez, Eloy (1995-06). "Recent Studies on the Zoopharmacognosy, Pharmacology and Neurotoxicology of Sesquiterpene Lactones*". Planta Medica. 61 (03): 199–203. doi:10.1055/s-2006-958055. ISSN 0032-0943.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Alaribe, Franca Nneka; Motaung, Keolebogile Shirley Caroline Mamots (2019-06). "Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent". Tissue Engineering Part A. 25 (11–12): 827–829. doi:10.1089/ten.tea.2019.0060. ISSN 1937-3341.
{{cite journal}}
: Check date values in:|date=
(help) - ^ a b Nayim, Paul; Mbaveng, Armelle T.; Wamba, Brice E. N.; Fankam, Aimé G.; Dzotam, Joachim K.; Kuete, Victor (2018-09-10). "Antibacterial and Antibiotic-Potentiating Activities of Thirteen Cameroonian Edible Plants against Gram-Negative Resistant Phenotypes". The Scientific World Journal. 2018: 1–14. doi:10.1155/2018/4020294. ISSN 2356-6140.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Alaribe, Franca Nneka; Motaung, Keolebogile Shirley Caroline Mamots (2019-06). "Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent". Tissue Engineering Part A. 25 (11–12): 827–829. doi:10.1089/ten.tea.2019.0060. ISSN 1937-3341.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Zarayneh, Simin; Sepahi, Abbas Akhavan; Jonoobi, Mehdi; Rasouli, Hassan (2018-10). "Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes". International Journal of Biological Macromolecules. 118: 1045–1054. doi:10.1016/j.ijbiomac.2018.06.160.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Benedik, Evgen (2022). "Sources of vitamin D for humans". International Journal for Vitamin and Nutrition Research. 92 (2): 118–125. doi:10.1024/0300-9831/a000733. ISSN 0300-9831.
- ^ Gaston, Kevin J.; Spicer, John I. (2012). Biodiversity: an introduction (2. ed. [repr.] ed.). Malden, Mass.: Blackwell Publ. ISBN 978-1-4051-1857-6.
- ^ Septembre-Malaterre, Axelle; Lalarizo Rakoto, Mahary; Marodon, Claude; Bedoui, Yosra; Nakab, Jessica; Simon, Elisabeth; Hoarau, Ludovic; Savriama, Stephane; Strasberg, Dominique; Guiraud, Pascale; Selambarom, Jimmy; Gasque, Philippe (2020-07-15). "Artemisia annua, a Traditional Plant Brought to Light". International Journal of Molecular Sciences. 21 (14): 4986. doi:10.3390/ijms21144986. ISSN 1422-0067.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b Feng, Xinchi; Cao, Shijie; Qiu, Feng; Zhang, Boli (2020). "Traditional application and modern pharmacological research of Artemisia annua L". Pharmacology & Therapeutics. 216: 107650. doi:10.1016/j.pharmthera.2020.107650. ISSN 1879-016X. PMID 32758647.
- ^ Wojtkowiak-Giera, Agnieszka; Derda, Monika; Kosik-Bogacka, Danuta; Kolasa-Wołosiuk, Agnieszka; Wandurska-Nowak, Elżbieta; Jagodziński, Paweł P.; Hadaś, Edward (2019). "The modulatory effect of Artemisia annua L. on toll-like receptor expression in Acanthamoeba infected mouse lungs". Experimental Parasitology. 199: 24–29. doi:10.1016/j.exppara.2019.02.011.
- ^ Efferth, Thomas (2018). "Beyond malaria: The inhibition of viruses by artemisinin-type compounds". Biotechnology Advances. 36 (6): 1730–1737. doi:10.1016/j.biotechadv.2018.01.001.
- ^ Wragge-Morley, Alexander (2022). "Medicine, connoisseurship, and the animal body". History of Science. 60 (4): 481–499. doi:10.1177/0073275320949001. ISSN 0073-2753.
- ^ a b Luo, Jiaoyang; Yan, Dan; Zhang, Da; Feng, Xue; Yan, Yan; Dong, Xiaoping; Xiao, Xiaohe (2011-06-14). "Substitutes for endangered medicinal animal horns and shells exposed by antithrombotic and anticoagulation effects". Journal of Ethnopharmacology. 136 (1): 210–216. doi:10.1016/j.jep.2011.04.053. ISSN 1872-7573. PMID 21549826.
- ^ Paul Pui-Hay But; Lai-Ching, Lung; Yan-Kit, Tam (1990-09). "Ethnopharmacology of rhinoceros horn. I: Antipyretic effects of rhinoceros horn and other animal horns". Journal of Ethnopharmacology. 30 (2): 157–168. doi:10.1016/0378-8741(90)90005-e. ISSN 0378-8741.
{{cite journal}}
: Check date values in:|date=
(help) - ^ King, Glenn F (2011-11). "Venoms as a platform for human drugs: translating toxins into therapeutics". Expert Opinion on Biological Therapy. 11 (11): 1469–1484. doi:10.1517/14712598.2011.621940. ISSN 1471-2598.
{{cite journal}}
: Check date values in:|date=
(help) - ^ a b c Fischer, Thomas; Riedl, Rainer (2022-02). "Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins". Drug Discovery Today. 27 (2): 567–575. doi:10.1016/j.drudis.2021.10.003.
{{cite journal}}
: Check date values in:|date=
(help) - ^ da Costa Marques, Maria Elizabeth; de Araújo Tenório, Humberto; Dos Santos, Claudio Wilian Victor; Dos Santos, Daniel Moreira; de Lima, Maria Elena; Pereira, Hugo Juarez Vieira (2016). "Angiotensin converting enzyme of Thalassophryne nattereri venom". International Journal of Biological Macromolecules. 91: 980–986. doi:10.1016/j.ijbiomac.2016.06.051. ISSN 1879-0003. PMID 27327905.
- ^ András, Csaba D.; Albert, Csilla; Salamon, Szidónia; Gálicza, Judit; András, Réka; András, Emil (2011-10-10). "Conus magus vs. Irukandji syndrome: a computational approach of a possible new therapy". Brain Research Bulletin. 86 (3–4): 195–202. doi:10.1016/j.brainresbull.2011.07.003. ISSN 1873-2747. PMID 21777663.
- ^ a b Jayachandran, Muthukumaran; Xiao, Jianbo; Xu, Baojun (2017-09-08). "A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota". International Journal of Molecular Sciences. 18 (9): 1934. doi:10.3390/ijms18091934. ISSN 1422-0067.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b c d Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz (2016-07-21). "From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics". Marine Drugs. 14 (7): 137. doi:10.3390/md14070137. ISSN 1660-3397.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Fleming, A. (1941-09-13). "Penicillin". BMJ. 2 (4210): 386–386. doi:10.1136/bmj.2.4210.386. ISSN 0959-8138.
- ^ Verma, Vijay C.; Gange, Alan C., eds. (2014). "Advances in Endophytic Research". doi:10.1007/978-81-322-1575-2.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ a b Sharma, Homa Nath; Catrett, Jonathan; Nwokeocha, Ogechi Destiny; Boersma, Melissa; Miller, Michael E.; Napier, Audrey; Robertson, Boakai K.; Abugri, Daniel A. (2023-05-29). "Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract". Scientific Reports. 13 (1). doi:10.1038/s41598-023-35676-6. ISSN 2045-2322.
- ^ Desmettre, T. (2020-03). "Toxoplasmosis and behavioural changes". Journal Francais D'ophtalmologie. 43 (3): e89–e93. doi:10.1016/j.jfo.2020.01.001. ISSN 1773-0597. PMID 31980266.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Shiojiri, Daisuke; Kinai, Ei; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi (2019-04). "Combination of Clindamycin and Azithromycin as Alternative Treatment for Toxoplasma gondii Encephalitis". Emerging Infectious Diseases. 25 (4): 841–843. doi:10.3201/eid2504.181689. ISSN 1080-6040.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Slavov, Nikolay; Cvengroš, Ján; Neudörfl, Jörg‐Martin; Schmalz, Hans‐Günther (2010-10-04). "Total Synthesis of the Marine Antibiotic Pestalone and its Surprisingly Facile Conversion into Pestalalactone and Pestalachloride A". Angewandte Chemie International Edition. 49 (41): 7588–7591. doi:10.1002/anie.201003755. ISSN 1433-7851.
- ^ Cueto, Mercedes; Jensen, Paul R.; Kauffman, Chris; Fenical, William; Lobkovsky, Emil; Clardy, Jon (2001-11-01). "Pestalone, a New Antibiotic Produced by a Marine Fungus in Response to Bacterial Challenge". Journal of Natural Products. 64 (11): 1444–1446. doi:10.1021/np0102713. ISSN 0163-3864.