User:RaoulV/Isentropic exponent

Isentropic exponent

The isentropic exponent or isentropic expansion coefficient is a dimensionless number that relates a relative change in specific volume of a fluid to a corresponding relative change in pressure, during an isentropic expansion or compression.

The isentropic exponent is defined by [1]:

(1)

If is constant along an isentropic path, then the pressure and specific volume of the gas along this path are related by

(2)

Relation to other thermodynamic quantities

edit
symbol quantity
  isentropic exponent
  heat capacity ratio
  specific volume
  density
  pressure
  entropy
  velocity of sound

The isentropic exponent is related to the velocity of sound by :

  (4)

Ideal gas

edit

For an ideal gas the isentropic exponent is equal to the heat capacity ratio  

  (3)

As a consequence, it is always larger than one.

Real gases, liquids and vapor-liquid mixtures

edit

For a real gas,   varies with temperature and pressure and is different from  . The difference becomes larger as the fluid deviates more from an ideal gas (for instance at higher pressures, close to the saturation pressure, in the 2-phase region, in the liquid state).

In the two-phase region, k can be lower than 1.

Application in fluid flow

edit

If the isentropic exponent is constant along an isentropic path from the valve inlet to the valve throat, the mass flux at the throat can be calculated from :

  (5)

To apply this equation without conversion factors, use consistent units (pressure in Pa, density in kg/m3, mass flux in kg/m2s).

This equation is used in the calculation of the capacity or required size of relief valves [2] [3].

Examples

edit

Values of k can be calculated by using an equation of state.

In the table below, some values of   and   are given for water (calculated with the IAPWS-97 equation of state). Water was selected because a very accurate equation of state is available. Similar differences between   and   exist for other fluids, even at lower pressures (the critical pressure of water is much higher than that of most hydrocarbons).

temperature pressure isentropic exponent heat capacity ratio
(°C) (bar a)    
101 1 1.317 1.337
180 10 1.219 1.406
270 50 1.267 1.670
311 100 1.237 2.297

See also

edit

References

edit
edit

IAPWS-97


Category:Thermodynamics Category:Physical quantities Category:Ratios