n
{\displaystyle n}
g
n
{\displaystyle g_{n}}
G
(
n
)
{\displaystyle G(n)}
0
f
0
(
2
)
=
2
{\displaystyle f_{0}(2)=2}
(
0
,
…
)
{\displaystyle (0,\dots )}
1
f
1
(
2
)
=
f
1
(
g
0
)
=
3
{\displaystyle f_{1}(2)=f_{1}(g_{0})=3}
(
1
,
…
)
{\displaystyle (1,\dots )}
2
f
ω
(
2
)
=
f
ω
(
g
0
)
=
5
{\displaystyle f_{\omega }(2)=f_{\omega }(g_{0})=5}
(
2
1
,
…
)
{\displaystyle (2^{1},\dots )}
3
f
ω
+
1
(
2
)
=
f
ω
(
f
1
(
2
)
)
=
f
ω
(
g
1
)
=
7
{\displaystyle f_{\omega +1}(2)=f_{\omega }(f_{1}(2))=f_{\omega }(g_{1})=7}
(
2
1
+
1
,
3
1
,
…
)
{\displaystyle (2^{1}+1,3^{1},\dots )}
4
f
ω
ω
(
2
)
=
f
ω
ω
(
g
0
)
{\displaystyle f_{\omega ^{\omega }}(2)=f_{\omega ^{\omega }}(g_{0})}
(
2
2
,
…
)
{\displaystyle (2^{2},\dots )}
5
f
ω
ω
+
1
(
2
)
=
f
ω
ω
(
f
1
(
2
)
)
=
f
ω
ω
(
g
1
)
{\displaystyle f_{\omega ^{\omega }+1}(2)=f_{\omega ^{\omega }}(f_{1}(2))=f_{\omega ^{\omega }}(g_{1})}
(
2
2
+
1
,
3
3
,
…
)
{\displaystyle (2^{2}+1,3^{3},\dots )}
6
f
ω
ω
+
ω
(
2
)
=
f
ω
ω
(
f
ω
(
2
)
)
=
f
ω
ω
(
g
2
)
{\displaystyle f_{\omega ^{\omega }+\omega }(2)=f_{\omega ^{\omega }}(f_{\omega }(2))=f_{\omega ^{\omega }}(g_{2})}
(
2
2
+
2
,
5
5
,
…
)
{\displaystyle (2^{2}+2,5^{5},\dots )}
7
f
ω
ω
+
ω
+
1
(
2
)
=
f
ω
ω
(
f
ω
(
f
1
(
2
)
)
)
=
f
ω
ω
(
g
3
)
{\displaystyle f_{\omega ^{\omega }+\omega +1}(2)=f_{\omega ^{\omega }}(f_{\omega }(f_{1}(2)))=f_{\omega ^{\omega }}(g_{3})}
(
2
2
+
2
+
1
,
3
3
+
3
,
…
,
7
7
,
…
)
{\displaystyle (2^{2}+2+1,3^{3}+3,\dots ,7^{7},\dots )}
8
f
ω
ω
+
1
(
2
)
=
f
ω
ω
+
1
(
g
0
)
=
f
ω
ω
g
0
+
1
(
2
)
=
f
ω
ω
g
0
(
g
4
)
{\displaystyle f_{\omega ^{\omega +1}}(2)=f_{\omega ^{\omega +1}}(g_{0})=f_{\omega ^{\omega }}^{g_{0}+1}(2)=f_{\omega ^{\omega }}^{g_{0}}(g_{4})}
(
2
2
+
1
,
…
,
2
⋅
g
4
g
4
,
…
)
{\displaystyle (2^{2+1},\dots ,2\cdot g_{4}^{g_{4}},\dots )}
9
f
ω
ω
+
1
+
1
(
2
)
=
f
ω
ω
+
1
(
f
1
(
2
)
)
=
f
ω
ω
+
1
(
g
1
)
=
f
ω
ω
g
1
+
1
(
f
1
(
2
)
)
=
f
ω
ω
g
1
(
g
5
)
{\displaystyle f_{\omega ^{\omega +1}+1}(2)=f_{\omega ^{\omega +1}}(f_{1}(2))=f_{\omega ^{\omega +1}}(g_{1})=f_{\omega ^{\omega }}^{g_{1}+1}(f_{1}(2))=f_{\omega ^{\omega }}^{g_{1}}(g_{5})}
(
2
2
+
1
+
1
,
3
3
+
1
,
…
,
3
⋅
g
5
g
5
,
…
)
{\displaystyle (2^{2+1}+1,3^{3+1},\dots ,3\cdot g_{5}^{g_{5}},\dots )}
10
f
ω
ω
+
1
+
ω
(
2
)
=
f
ω
ω
+
1
(
f
ω
(
2
)
)
=
f
ω
ω
+
1
(
g
2
)
=
f
ω
ω
g
2
+
1
(
g
2
)
=
f
ω
ω
g
2
(
g
6
)
{\displaystyle f_{\omega ^{\omega +1}+\omega }(2)=f_{\omega ^{\omega +1}}(f_{\omega }(2))=f_{\omega ^{\omega +1}}(g_{2})=f_{\omega ^{\omega }}^{g_{2}+1}(g_{2})=f_{\omega ^{\omega }}^{g_{2}}(g_{6})}
(
2
2
+
1
+
2
,
…
,
5
5
+
1
,
…
,
5
⋅
g
6
g
6
,
…
)
{\displaystyle (2^{2+1}+2,\dots ,5^{5+1},\dots ,5\cdot g_{6}^{g_{6}},\dots )}
11
f
ω
ω
+
1
+
ω
+
1
(
2
)
=
f
ω
ω
+
1
(
f
ω
(
f
1
(
2
)
)
)
=
f
ω
ω
+
1
(
g
3
)
{\displaystyle f_{\omega ^{\omega +1}+\omega +1}(2)=f_{\omega ^{\omega +1}}(f_{\omega }(f_{1}(2)))=f_{\omega ^{\omega +1}}(g_{3})}
(
2
2
+
1
+
2
+
1
,
3
3
+
1
+
3
,
…
,
7
7
+
1
,
…
,
7
⋅
g
7
g
7
,
…
)
{\displaystyle (2^{2+1}+2+1,3^{3+1}+3,\dots ,7^{7+1},\dots ,7\cdot g_{7}^{g_{7}},\dots )}
12
f
ω
ω
+
1
+
ω
ω
(
2
)
=
f
ω
ω
+
1
(
f
ω
ω
(
2
)
)
)
=
f
ω
ω
+
1
(
g
4
)
{\displaystyle f_{\omega ^{\omega +1}+\omega ^{\omega }}(2)=f_{\omega ^{\omega +1}}(f_{\omega ^{\omega }}(2)))=f_{\omega ^{\omega +1}}(g_{4})}
(
2
2
+
1
+
2
2
,
…
,
g
4
g
4
+
1
,
…
,
g
4
⋅
g
8
g
8
,
…
)
{\displaystyle (2^{2+1}+2^{2},\dots ,g_{4}^{g_{4}+1},\dots ,g_{4}\cdot g_{8}^{g_{8}},\dots )}
13
f
ω
ω
+
1
+
ω
ω
+
1
(
2
)
=
f
ω
ω
+
1
(
f
ω
ω
(
f
1
(
2
)
)
)
)
=
f
ω
ω
+
1
(
g
5
)
{\displaystyle f_{\omega ^{\omega +1}+\omega ^{\omega }+1}(2)=f_{\omega ^{\omega +1}}(f_{\omega ^{\omega }}(f_{1}(2))))=f_{\omega ^{\omega +1}}(g_{5})}
(
2
2
+
1
+
2
2
+
1
,
3
3
+
1
+
3
3
,
…
,
g
5
g
5
+
1
,
…
,
g
5
⋅
g
9
g
9
,
…
)
{\displaystyle (2^{2+1}+2^{2}+1,3^{3+1}+3^{3},\dots ,g_{5}^{g_{5}+1},\dots ,g_{5}\cdot g_{9}^{g_{9}},\dots )}
14
f
ω
ω
+
1
+
ω
ω
+
ω
(
2
)
=
f
ω
ω
+
1
(
f
ω
ω
(
f
ω
(
2
)
)
)
)
=
f
ω
ω
+
1
(
g
6
)
{\displaystyle f_{\omega ^{\omega +1}+\omega ^{\omega }+\omega }(2)=f_{\omega ^{\omega +1}}(f_{\omega ^{\omega }}(f_{\omega }(2))))=f_{\omega ^{\omega +1}}(g_{6})}
(
2
2
+
1
+
2
2
+
2
,
…
,
5
5
+
1
+
5
5
,
…
,
g
6
g
6
+
1
,
…
,
g
6
⋅
g
10
g
10
,
…
)
{\displaystyle (2^{2+1}+2^{2}+2,\dots ,5^{5+1}+5^{5},\dots ,g_{6}^{g_{6}+1},\dots ,g_{6}\cdot g_{10}^{g_{10}},\dots )}
15
f
ω
ω
+
1
+
ω
ω
+
ω
+
1
(
2
)
=
f
ω
ω
+
1
(
f
ω
ω
(
f
ω
(
f
1
(
2
)
)
)
)
)
=
f
ω
ω
+
1
(
g
7
)
{\displaystyle f_{\omega ^{\omega +1}+\omega ^{\omega }+\omega +1}(2)=f_{\omega ^{\omega +1}}(f_{\omega ^{\omega }}(f_{\omega }(f_{1}(2)))))=f_{\omega ^{\omega +1}}(g_{7})}
(
2
2
+
1
+
2
2
+
2
+
1
,
…
,
7
7
+
1
+
7
7
,
…
,
g
7
g
7
+
1
,
…
,
g
7
⋅
g
11
g
11
,
…
)
{\displaystyle (2^{2+1}+2^{2}+2+1,\dots ,7^{7+1}+7^{7},\dots ,g_{7}^{g_{7}+1},\dots ,g_{7}\cdot g_{11}^{g_{11}},\dots )}
16
f
ω
ω
ω
(
2
)
=
f
ω
ω
ω
(
g
0
)
=
?
{\displaystyle f_{\omega ^{\omega ^{\omega }}}(2)=f_{\omega ^{\omega ^{\omega }}}(g_{0})=?}
(
2
2
2
,
…
,
2
⋅
n
2
⋅
n
2
+
2
⋅
n
+
2
,
…
)
{\displaystyle (2^{2^{2}},\dots ,2\cdot n^{2\cdot n^{2}+2\cdot n+2},\dots )}
⋮
{\displaystyle \vdots }