The derivative of the product of three functions is:
.
Since the product of two or more functions occurs in many mathematical models of physical phenomena, the product rule has broad application in Physics, Chemistry, and Engineering.
Discovery of this rule is credited to Gottfried Leibniz (however, Child (2008) argues that it is due to Isaac Barrow), who demonstrated it using differentials. Here is Leibniz's argument: Let u(x) and v(x) be two differentiable functions of x. Then the differential of uv is
Since the term du·dv is "negligible" (compared to du and dv), Leibniz concluded that
and this is indeed the differential form of the product rule. If we divide through by the differential dx, we obtain
Suppose one wants to differentiate ƒ(x) = x2sin(x). By using the product rule, one gets the derivative ƒ '(x) = 2x sin(x) + x2cos(x) (since the derivative of x2 is 2x and the derivative of sin(x) is cos(x)).
One special case of the product rule is the constant multiple rule which states: if c is a real number and ƒ(x) is a differentiable function, then cƒ(x) is also differentiable, and its derivative is (c × ƒ)'(x) = c × ƒ '(x). This follows from the product rule since the derivative of any constant is zero. This, combined with the sum rule for derivatives, shows that differentiation is linear.
The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable, but only says what its derivative is if it is differentiable.)
Consider the vertical acceleration of a model rocket relative to its initial position at a fixed point on the ground. Newton's second law says that the force is equal to the time rate change of momentum. If F is the net force (sum of forces), p is the momentum, and t is the time,
Since the momentum is equal to the product of mass and velocity, this yields
where m is the mass and v is the velocity. Application of the product rule gives
Since the acceleration a, is defined as the time rate change of velocity, a = dv/dt,
Solving for the acceleration,
Since the rocket is losing mass, dm/dt is negative, and the changing mass term results in increased acceleration.[1][2]
Faraday's law of electromagnetic induction states that the induced electromotive force is the negative time rate of change of magnetic flux through a conducting loop.
where
is the electromotive force (emf) in volts and
ΦB is the magnetic flux in webers. For a loop of area, A, in a magnetic field, B, the magnetic flux is given by
where θ is the angle between the normal to the current loop and the magnetic field direction.
Taking the negative derivative of the flux with respect to time yields the electromotive force gives
In many cases of practical interest, only one variable (A, B, or θ) is changing so two of the three above terms are often zero.
It is a common error, when studying calculus, to suppose that the derivative of (uv) equals (u ′)(v ′) (there is an exaggerated story that Leibniz himself made this error initially);[3] however, there are clear counterexamples to this. For a ƒ(x) whose derivative is ƒ '(x), the function can also be written as ƒ(x) · 1, since 1 is the identity element for multiplication. If the above-mentioned misconception were true, (u′)(v′) would equal zero. This is true because the derivative of a constant (such as 1) is zero and the product of ƒ '(x) · 0 is also zero.
A rigorous proof of the product rule can be given using the properties of limits and the definition of the derivative as a limit of Newton's difference quotient.
If
and ƒ and g are each differentiable at the fixed number x, then
Now the difference
is the area of the big rectangle minus the area of the small rectangle in the illustration.
The region between the smaller and larger rectangle can be split into two rectangles, the sum of whose areas is[4]
Therefore the expression in (1) is equal to
Assuming that all limits used exist, (4) is equal to
Now
because ƒ(x) remains constant as w → x;
because g is differentiable at x;
because ƒ is differentiable at x;
and now the "hard" one:
because g, being differentiable, is continuous at x.
We conclude that the expression in (5) is equal to
Let f = uv and suppose u and v are positive functions of x. Then
Differentiating both sides:
and so, multiplying the left side by f, and the right side by uv,
The proof appears in [1]. Note that since u, v need to be continuous, the assumption on positivity does not diminish the generality.
This proof relies on the chain rule and on the properties of the natural logarithm function, both of which are deeper than the product rule. From one point of view, that is a disadvantage of this proof. On the other hand, the simplicity of the algebra in this proof perhaps makes it easier to understand than a proof using the definition of differentiation directly.
Among the applications of the product rule is a proof that
when n is a positive integer (this rule is true even if n is not positive or is not an integer, but the proof of that must rely on other methods). The proof is by mathematical induction on the exponent n. If n = 0 then xn is constant and nxn − 1 = 0. The rule holds in that case because the derivative of a constant function is 0. If the rule holds for any particular exponent n, then for the next value, n + 1, we have
Therefore if the proposition is true of n, it is true also of n + 1.
^The illustration disagrees with some special cases, since – in actuality – ƒ(w) need not be greater than ƒ(x) and g(w) need not be greater than g(x). Nonetheless, the equality of (2) and (3) is easily checked by algebra.
Child, J. M. (2008) "The early mathematical manuscripts of Leibniz", Gottfried Wilhelm Leibniz, translated by J. M. Child; page 29, footnote 58.