Fluorescent quantum dots have been used to develop biosensing platforms[2] and drug delivery[3] in microfluidic devices. Quantum dots are useful due to their small size, precise excitation wavelength, and high quantum yield.[2][4] These are advantages over traditional dyes which may interfere with the activity of the studied compound.[4] However, the bulk creation and conjugation of quantum dots to molecules of interest remains a challenge[2][5]. Microfluidic devices that conjugate nucleotides with quantum dots have been designed to solve this issue by significantly reducing the conjugation time from two days[6] to minutes.[5] DNA-quantum dot conjugates are of importance to detect complementary DNA and miRNA in biological systems.[7]
This is a user sandbox of Wongbria. You can use it for testing or practicing edits. This is not the sandbox where you should draft your assigned article for a dashboard.wikiedu.org course. To find the right sandbox for your assignment, visit your Dashboard course page and follow the Sandbox Draft link for your assigned article in the My Articles section. |
- ^ Garstecki, Piotr; Fuerstman, Michael J.; Stone, Howard A.; Whitesides, George M. (2006-02-24). "Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up". Lab on a Chip. 6 (3): 437–446. doi:10.1039/B510841A. ISSN 1473-0189.
- ^ a b c Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J. (2011/10). "Biosensing with Quantum Dots: A Microfluidic Approach". Sensors. 11 (10): 9732–9763. doi:10.3390/s111009732.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: unflagged free DOI (link) - ^ Yang, C.-H.; Huang, K.-S.; Lin, Y.-S.; Lu, K.; Tzeng, C.-C.; Wang, E.-C.; Lin, C.-H.; Hsu, W.-Y.; Chang, J.-Y. (2009-04-07). "Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs". Lab on a Chip. 9 (7): 961–965. doi:10.1039/B814952F. ISSN 1473-0189.
- ^ a b Alivisatos, A. Paul; Gu, Weiwei; Larabell, Carolyn (2005-07-08). "Quantum Dots as Cellular Probes". Annual Review of Biomedical Engineering. 7 (1): 55–76. doi:10.1146/annurev.bioeng.7.060804.100432. ISSN 1523-9829.
- ^ a b Nguyen, Thu H.; Sedighi, Abootaleb; Krull, Ulrich J.; Ren, Carolyn L. (2020-03-27). "Multifunctional Droplet Microfluidic Platform for Rapid Immobilization of Oligonucleotides on Semiconductor Quantum Dots". ACS Sensors. 5 (3): 746–753. doi:10.1021/acssensors.9b02145.
- ^ Liu, Biwu; Liu, Juewen (2017-05-11). "Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry". Analytical Methods. 9 (18): 2633–2643. doi:10.1039/C7AY00368D. ISSN 1759-9679.
- ^ Su, Shao; Fan, Jinwei; Xue, Bing; Yuwen, Lihui; Liu, Xingfen; Pan, Dun; Fan, Chunhai; Wang, Lianhui (2014-01-09). "DNA-Conjugated Quantum Dot Nanoprobe for High-Sensitivity Fluorescent Detection of DNA and micro-RNA". ACS Applied Materials & Interfaces. 6 (2): 1152–1157. doi:10.1021/am404811j. ISSN 1944-8244.
- ^ Ahn, Keunho; Agresti, Jeremy; Chong, Henry; Marquez, Manuel; Weitz, D. A. (2006-06-26). "Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels". Applied Physics Letters. 88 (26): 264105. doi:10.1063/1.2218058. ISSN 0003-6951.
- ^ Priest, Craig; Herminghaus, Stephan; Seemann, Ralf (2006-09-25). "Controlled electrocoalescence in microfluidics: Targeting a single lamella". Applied Physics Letters. 89 (13): 134101. doi:10.1063/1.2357039. ISSN 0003-6951.
- ^ Anna, Shelley L.; Bontoux, Nathalie; Stone, Howard A. (2003-01-15). "Formation of dispersions using "flow focusing" in microchannels". Applied Physics Letters. 82 (3): 364–366. doi:10.1063/1.1537519. ISSN 0003-6951.
- ^ Niu, Xize; Gulati, Shelly; Edel, Joshua B.; deMello, Andrew J. (2008-11-01). "Pillar-induced droplet merging in microfluidic circuits". Lab on a Chip. 8 (11): 1837–1841. doi:10.1039/B813325E. ISSN 1473-0189.