To derive the Nernst-Planck equation , we must start from the molar equation for electrochemical potential :
μ
¯
=
μ
⊖
+
R
T
ln
a
+
z
F
E
,
where
R
=
8.314
J
K
−
1
mol
−
1
,
F
=
96
485
C
mol
−
1
F
x
=
−
∂
μ
¯
∂
x
=
−
(
R
T
a
)
∂
a
∂
x
−
z
F
∂
E
∂
x
J
=
v
c
=
u
F
x
c
=
−
(
u
R
T
c
a
)
∂
a
∂
x
−
u
z
F
c
∂
E
∂
x
D
(
diffusivity
)
=
u
R
T
∴
J
=
−
(
D
c
a
)
∂
a
∂
x
−
u
z
F
c
∂
E
∂
x
{\displaystyle {\begin{aligned}{\bar {\mu }}&=\mu ^{\ominus }+RT\ln {a}+zFE,\qquad {\text{ where }}R=8.314{\text{ }}{\text{J}}{\text{ K}}^{-1}{\text{ mol}}^{-1},\ F=96\ 485{\text{ }}{\text{ C}}{\text{ mol}}^{-1}\\F_{\text{x}}&=-{\partial {\bar {\mu }} \over \partial x}\\&=-\left({RT \over a}\right){\partial a \over \partial x}-zF{\partial E \over \partial x}\\J&=vc=uF_{\text{x}}c\\&=-\left({uRTc \over a}\right){\partial a \over \partial x}-uzFc{\partial E \over \partial x}\\D({\text{diffusivity}})&=uRT\\\therefore J&=-\left({Dc \over a}\right){\partial a \over \partial x}-uzFc{\partial E \over \partial x}\\\end{aligned}}}
Activity (a ) is more accurate than using concentration (c ), as it takes into account electrostatic forces of attraction within the solution. Activities and concentrations are related by the following equation:
a
=
γ
c
{\displaystyle a=\gamma c}
, where γ is the activity coefficient .
The more dilute a solution is, the less significant these forces become, and the activity approaches the actual concentration.
lim
γ
→
1
a
=
c
{\displaystyle \lim _{\gamma \to 1}{a}=c}
If we assume the solution is dilute and the chemical species has no charge (i.e. z = 0), then the equation simplifies into Fick's first law of diffusion :
J
=
−
D
∂
c
∂
x
{\displaystyle J=-D{\partial c \over \partial x}}
Resting Membrane Potential of a Neuron
edit
The resting membrane potential (V m ) can be calculating using the Goldman-Hodgkin-Katz equation , where M represents cations and A are anions :
V
m
=
R
T
F
ln
(
∑
i
P
M
M
out
,
i
+
+
∑
j
P
A
A
in
,
j
−
∑
i
P
M
M
in
,
i
+
+
∑
j
P
A
A
out
,
j
−
)
{\displaystyle V_{\text{m}}={RT \over F}\ln {\left({\frac {\displaystyle \sum _{i}P_{\text{M}}{\text{M}}_{{\text{out}},i}^{+}+\displaystyle \sum _{j}P_{\text{A}}{\text{A}}_{{\text{in}},j}^{-}}{\displaystyle \sum _{i}P_{\text{M}}{\text{M}}_{{\text{in}},i}^{+}+\displaystyle \sum _{j}P_{\text{A}}{\text{A}}_{{\text{out}},j}^{-}}}\right)}}
The two main ions which contribute to the resting membrane potential in neurons are sodium (Na+ ) and potassium (K+ ).
For sodium:
J
=
−
u
R
T
d
c
d
x
−
u
F
c
E
δ
d
c
J
+
u
F
c
E
δ
=
−
d
x
u
R
T
∫
c
out
c
in
d
c
J
+
u
F
c
E
δ
=
−
∫
0
δ
d
x
u
R
T
δ
u
F
E
ln
(
J
+
u
F
c
in
E
δ
J
+
u
F
c
out
E
δ
)
=
−
δ
u
R
T
J
+
u
F
c
in
E
δ
J
+
u
F
c
out
E
δ
=
exp
(
−
F
E
R
T
)
J
=
u
F
E
δ
[
c
out
exp
(
−
F
E
R
T
)
−
c
in
1
−
exp
(
−
F
E
R
T
)
]
P
=
u
R
T
δ
J
=
P
F
E
R
T
[
c
out
exp
(
−
F
E
R
T
)
−
c
in
1
−
exp
(
−
F
E
R
T
)
]
{\displaystyle {\begin{aligned}J&=-uRT{dc \over dx}-uFc{E \over \delta }\\{dc \over J+uFc{E \over \delta }}&=-{dx \over uRT}\\\int _{c_{\text{out}}}^{c_{\text{in}}}{dc \over J+uFc{E \over \delta }}&=-\int _{0}^{\delta }{dx \over uRT}\\{\delta \over uFE}\ln {\left({J+uFc_{\text{in}}{E \over \delta } \over J+uFc_{\text{out}}{E \over \delta }}\right)}&=-{\delta \over uRT}\\{J+uFc_{\text{in}}{E \over \delta } \over J+uFc_{\text{out}}{E \over \delta }}&=\exp {\left(-{FE \over RT}\right)}\\J&=uF{E \over \delta }\left[{\frac {c_{\text{out}}\exp {\left(-{FE \over RT}\right)}-c_{\text{in}}}{1-\exp {\left(-{FE \over RT}\right)}}}\right]\\P&=u{RT \over \delta }\\J&=P{FE \over RT}\left[{\frac {c_{\text{out}}\exp {\left(-{FE \over RT}\right)}-c_{\text{in}}}{1-\exp {\left(-{FE \over RT}\right)}}}\right]\\\end{aligned}}}
When a given neuron is at rest, there is no net ionic flux across the membrane:
I
K
+
I
Na
+
I
Cl
=
0
=
F
(
J
K
+
J
Na
−
J
Cl
)
{\displaystyle {\begin{aligned}I_{\text{K}}+I_{\text{Na}}+I_{\text{Cl}}&=0\\&=F(J_{\text{K}}+J_{\text{Na}}-J_{\text{Cl}})\\\end{aligned}}}
This flux terms in brackets yields the following:
P
K
F
V
m
R
T
[
[
K
+
]
out
exp
(
−
F
V
m
R
T
)
−
[
K
+
]
in
1
−
exp
(
−
F
V
m
R
T
)
]
+
P
Na
F
V
m
R
T
[
[
Na
+
]
out
exp
(
−
F
V
m
R
T
)
−
[
Na
+
]
in
1
−
exp
(
−
F
V
m
R
T
)
]
+
P
Cl
F
V
m
R
T
[
[
Cl
−
]
in
exp
(
−
F
V
m
R
T
)
−
[
Cl
−
]
out
1
−
exp
(
−
F
V
m
R
T
)
]
{\displaystyle {P_{\text{K}}{FV_{\text{m}} \over RT}\left[{\frac {\left[{\text{K}}^{+}\right]_{\text{out}}\exp {\left(-{FV_{\text{m}} \over RT}\right)}-\left[{\text{K}}^{+}\right]_{\text{in}}}{1-\exp {\left(-{FV_{\text{m}} \over RT}\right)}}}\right]}+{P_{\text{Na}}{FV_{\text{m}} \over RT}\left[{\frac {\left[{\text{Na}}^{+}\right]_{\text{out}}\exp {\left(-{FV_{\text{m}} \over RT}\right)}-\left[{\text{Na}}^{+}\right]_{\text{in}}}{1-\exp {\left(-{FV_{\text{m}} \over RT}\right)}}}\right]}+{P_{\text{Cl}}{FV_{\text{m}} \over RT}\left[{\frac {\left[{\text{Cl}}^{-}\right]_{\text{in}}\exp {\left(-{FV_{\text{m}} \over RT}\right)}-\left[{\text{Cl}}^{-}\right]_{\text{out}}}{1-\exp {\left(-{FV_{\text{m}} \over RT}\right)}}}\right]}}
This means that:
exp
(
−
F
V
m
R
T
)
(
P
K
[
K
+
]
out
+
P
Na
[
Na
+
]
out
+
P
Cl
[
Cl
−
]
in
)
=
P
K
[
K
+
]
in
+
P
Na
[
Na
+
]
in
+
P
Cl
[
Cl
+
]
out
−
F
V
m
R
T
=
ln
(
P
K
[
K
+
]
in
+
P
Na
[
Na
+
]
in
+
P
Cl
[
Cl
+
]
out
P
K
[
K
+
]
out
+
P
Na
[
Na
+
]
out
+
P
Cl
[
Cl
−
]
in
)
∴
V
m
=
R
T
F
ln
(
P
K
[
K
+
]
out
+
P
Na
[
Na
+
]
out
+
P
Cl
[
Cl
−
]
in
P
K
[
K
+
]
in
+
P
Na
[
Na
+
]
in
+
P
Cl
[
Cl
+
]
out
)
{\displaystyle {\begin{aligned}\exp {\left(-{FV_{\text{m}} \over RT}\right)}\left(P_{\text{K}}\left[{\text{K}}^{+}\right]_{\text{out}}+P_{\text{Na}}\left[{\text{Na}}^{+}\right]_{\text{out}}+P_{\text{Cl}}\left[{\text{Cl}}^{-}\right]_{\text{in}}\right)&=P_{\text{K}}\left[{\text{K}}^{+}\right]_{\text{in}}+P_{\text{Na}}\left[{\text{Na}}^{+}\right]_{\text{in}}+P_{\text{Cl}}\left[{\text{Cl}}^{+}\right]_{\text{out}}\\-{FV_{\text{m}} \over RT}&=\ln {\left({\frac {P_{\text{K}}\left[{\text{K}}^{+}\right]_{\text{in}}+P_{\text{Na}}\left[{\text{Na}}^{+}\right]_{\text{in}}+P_{\text{Cl}}\left[{\text{Cl}}^{+}\right]_{\text{out}}}{P_{\text{K}}\left[{\text{K}}^{+}\right]_{\text{out}}+P_{\text{Na}}\left[{\text{Na}}^{+}\right]_{\text{out}}+P_{\text{Cl}}\left[{\text{Cl}}^{-}\right]_{\text{in}}}}\right)}\\\therefore V_{\text{m}}&={RT \over F}\ln {\left({\frac {P_{\text{K}}\left[{\text{K}}^{+}\right]_{\text{out}}+P_{\text{Na}}\left[{\text{Na}}^{+}\right]_{\text{out}}+P_{\text{Cl}}\left[{\text{Cl}}^{-}\right]_{\text{in}}}{P_{\text{K}}\left[{\text{K}}^{+}\right]_{\text{in}}+P_{\text{Na}}\left[{\text{Na}}^{+}\right]_{\text{in}}+P_{\text{Cl}}\left[{\text{Cl}}^{+}\right]_{\text{out}}}}\right)}\\\end{aligned}}}
A typical neuron has a resting V m of -70 mV. As such, chloride, whose equilibrium potential is roughly the same, does not contribute significantly to the resting V m , and can be omitted:
V
m
≈
E
Cl
∴
V
m
=
R
T
F
ln
(
[
K
+
]
out
+
α
[
Na
+
]
out
[
K
+
]
in
+
α
[
Na
+
]
in
)
,
where
α
=
P
Na
P
K
{\displaystyle {\begin{aligned}V_{\text{m}}&\approx E_{\text{Cl}}\\\therefore V_{\text{m}}&={RT \over F}\ln {\left({\frac {\left[{\text{K}}^{+}\right]_{\text{out}}+\alpha \left[{\text{Na}}^{+}\right]_{\text{out}}}{\left[{\text{K}}^{+}\right]_{\text{in}}+\alpha \left[{\text{Na}}^{+}\right]_{\text{in}}}}\right)},\qquad {\text{where }}\alpha ={\frac {P_{\text{Na}}}{P_{\text{K}}}}\\\end{aligned}}}
This equation can be refined by taking into account the effect of the sodium/potassium pump, which counteracts sodium and potassium leak and is vital in maintaining a constant resting V m .
V
m
=
R
T
F
ln
(
[
K
+
]
out
+
α
r
[
Na
+
]
out
[
K
+
]
in
+
α
r
[
Na
+
]
in
)
,
where
r
=
J
Na
J
K
=
3
2
{\displaystyle V_{\text{m}}={RT \over F}\ln {\left({\frac {\left[{\text{K}}^{+}\right]_{\text{out}}+{\dfrac {\alpha }{r}}\left[{\text{Na}}^{+}\right]_{\text{out}}}{\left[{\text{K}}^{+}\right]_{\text{in}}+{\dfrac {\alpha }{r}}\left[{\text{Na}}^{+}\right]_{\text{in}}}}\right)},\qquad {\text{where }}r={\frac {J_{\text{Na}}}{J_{\text{K}}}}={\frac {3}{2}}}