User talk:Ekarlsenayala/sandbox

Latest comment: 5 years ago by Ekarlsenayala in topic Elena's peer review

Elena's peer review

edit

Hi Elena,

Let me begin by encouraging you to add your sections on fire ecology, diseases, and pests to the Pine page and NOT to Pinus elliottii. You've covered these topics really thoroughly but for the most part what you've written is not specific to slash pines. The Pinus page lacks comprehensive coverage of these important topics. The sections on fire and fusiform rust barely mention P. elliottii and could be added to the Pine page with minimal changes; the section on pitch canker should be reworked so that those parts pertaining specifically to slash pine can remain on the Slash pine page.

Every sentence should be checked for structure, spelling, and punctuation. There are a lot of typos, missing or redundant words, incorrect pluralization, missing periods, and sentences lacking objects or that otherwise don’t make sense. I would be happy to address these in a "track changes"-style review before any of this goes live, but right now it just seems like it needs to be read through again.

Introduction
edit

The introduction is great and covers all the right topics: the type of tree, common names and their etymology, and importance to humans. If I read nothing else, I'd still be glad I came to this page (I didn't know about "slashes," interesting!). It's less effective as an overview: it doesn't mention the sections on fire and diseases/pests that make up the bulk of the article. If you prefer not to relocate these topics to another article I suggest you briefly mention them in the introduction. I think the slash pine's description as a "monoecious evergreen conifer tree" is a bit too wordy for the first sentence—maybe remove "evergreen" and link "monoecious".

Range and habitat
edit

Just a few small comments on this section:

  • Slash pine isn't endemic to Florida and Georgia if it is found elsewhere
  • "17 °C with extreme ranges of -18 to 41 °C"

* The first mention of the two varieties of slash pine seems out of place in this section. Either move to the taxonomy section, or mention the two varieties in the introduction.

  • Is the last sentence supported in the literature or inferred?
  • I was taught that comparative verbs ("grow better," "higher soil moisture") need explicit comparative objects ("than those in arid habitats"), but reading it again I'm not sure that applies here.
Taxonomy
edit

I really like the way this section is written. It is clear and succinct, and it introduces and lays out the varieties vs. species debate in an easy-to-understand and unbiased way. I would like to see this section titled "Description and taxonomy," because it is the only section of the article that offers a physical description of the slash pine, and maybe even moved ahead of the "Range and habitat section." I love the side-by-side comparison highlighting the key differences between the two varieties. "Overall the tree is likely more hardy because of the influence of storms in the south" needs a citation. Does the last sentence belong under the var. densa bullet?

Fire ecology
edit

Other than feeling like I wandered into a different article, this section was really informative. "Loggers vs. locals" seems like a strange way to frame the historical narrative on controlled burns, implying that the loggers were all from out of state and the locals had only an intrinsic aversion to fire use and no commercial interests of their own. It sounds like it might have been loggers vs. farmers and turpentine distillers. The natural adaptations of pine trees to ground fire are buried under the "Uses" subheading when they should be mentioned at the beginning of the whole "Fire ecology" section.

  • regions like the South and the Southeast should be capitalized in this context; European settlers should not
  • over time is not one word unless you're working it and getting paid time-and-a-half
Diseases and pests
edit

Add as many links to relevant Wikipedia articles as you can, esp. for spore stages and symptoms. One of the symptoms listed is "business," what's that about? Although it feels like most of what is written in this section belongs in a more general article on pine trees, I really liked the brief bit about the commercial history of the slash pine in Florida. I think a shorter paragraph distilling only those parts you already wrote on the slash pine industry, and the impacts of disease and fungus on that industry, would be a better fit on this page.

That's all I've got for now. Great job! Hit me up if you have any questions or want me to look over a later draft.
Cheers,
Dave
Davidaboyd (talk) 06:31, 18 February 2019 (UTC)Reply


traits the varieties have in common description and taxonomy (talk about the general description of the trees and their varieties) that will set up the description for range and habitat slash pine industry interesting! don't take that out phylogenies of pine trees! Ekarlsenayala (talk) 15:14, 20 February 2019 (UTC)Reply

Comments from Emily

edit

[You've added a lot of really good text, which is great! I'm doing my best to differentiate what was on this page originally from your updates, so some of my comments will address that. The fire ecology section is really good; I agree with David's comment that the first part is very general, but then in the second paragraph there you do link it specifically to slash pine habitats, so I think you can leave this section on this page. There are some remaining grammatical and phrasing issues, mostly towards the bottom, which I've flagged in bold.

I assume you've thought about how to integrate this with the existing slash pine page - in particular, please make sure that you keep the taxonomy box, that is properly formatted already on the existing page but you don't have it on yours, and I want to make sure that piece doesn't get lost when you transfer your content. Please also make sure you include the Uses section from the original page at the end, and the description information that's missing (see below). Really nice job overall!]

Pinus elliottii, commonly known as slash pine,[1][2] is a conifer tree in the Southeastern United States. Slash pine is named after the "slashes" – swampy ground overgrown with trees and bushes – that constitute its habitat. Other common names include swamp pine, yellow slash pine, and southern Florida pine.[2] Historically, slash pine has been an important economic timber for naval stores, turpentine, and resin. [2] Slash pine has two different varieties: Pinus elliottii var. densa and Pinus elliottii var. elliottii.


Description and Taxonomy

edit

[The original page had these as separate sections; it's fine to combine them, but you seem to have done away with the actual description information, which was useful and a standard element on these pages, so make sure you copy that back in before moving your text over to the live page (for example, the height and diameter information is missing and needs to be included here).]

 
Slash pine needles

There are two described varieties of Pinus elliotii. However, recent genetic studies have indicated that the varieties may not be more closely related to each other than they are to other pines in the Southeast. If this is the case, re-classifying these varieties as separate species would be warranted.[3] Slash pine (Pinus elliottii) can hybridize with loblolly pine (Pinus taeda), sand pine (Pinus clausa), and long leaf pine (Pinus palustris).[4]

 
Pinus elliottii cones

The two commonly accepted varieties are the following:

  • P. elliottii var. elliottii (typical slash pine) which ranges from South Carolina to Louisiana, and down to Central Florida. Its leaves are in bundles, fascicles of twos and threes, mostly threes, and the cones are larger, 7–15 cm (2.8–5.9 in).
  • P. elliottii var. densa (South Florida slash pine, Dade County pine) is found in the pine rocklands of Southern Florida and Florida Keys, including the Everglades.[5][6] Leaves are nearly all in bundles of two with longer needles. The cones are smaller, 5–12 cm (2.0–4.7 in), the wood is denser, and the tree has a thicker taproot.[4] Unlike the typical variety of slash pine, seedlings of P. elliottii var. densa has a "grass stage," similar to longleaf pine. Pinus elliotiti var. elliottii is not frost tolerant which limits its range to South Florida.[7]

Range and habitat

edit
 
Slash pine growing in a maritime savanna on the Mississippi and Alabama state line - Grand Bay National Estuarine Research Reserve, 1998

Communities dominated by slash pine are termed "slash pine forests." Slash pine is predominately found in Florida and Georgia and extends from South Carolina west to Southeastern Louisiana, and south to the Florida Keys.[8] The natural habitat is sandy subtropical maritime forests and wet flatwoods.[9] Slash pine generally grows better in warm humid areas where the average annual temperature is 17°C with extreme ranges from -18 to 41°C [2]. Factors such as competition, fire, and precipitation may limit the natural distribution of these trees. Slash pine are able to grow in an array of soils, however, pine stands that are close to bodies of water such as swamps and ponds grow better because of higher soil moisture and seedling protection from wildfire[2]. These forests have been managed through controlled fires since the beginning of the twentieth century. [10] Within the first year, Pinus elliottii are particularly susceptible to seedling mortality caused by fire. Pinus elliottii var. densa is more fire resistant than Pinus elliotiti var. elliottii because it has thicker bark.[2]



Fire Ecology

edit

History

edit

Fire has long been an important element in South Eastern forests. Native Americans burned land in the South to improve grass growth for grazing and visibility for hunting.[11] When European settlers arrived in the New World, they brought new diseases that severely diminished the Native American populations. Over time, with the lack of consistent burning, much of the open land of the South converted back to forest land.[11] Logging began to increase in the South East which created some tension between the loggers and local farmers. The loggers wanted to continue to burn the forest but the local farmers were concerned about how burning would affect cattle grazing and turpentine production.[11] Fire maintenance has been a long been a controversial issue. In the 1940s the Smokey Bear campaign to prevent wildfires lead to a shift towards anti-burning practices. Consequently, many of these fire-dependent ecosystems suffered without regular fire cycles. Despite many reports from the U.S. Forest Service about the benefits fire has on forage production, pine regeneration, control of tree pathogens, and reducing risks of wildfires, controlled burning did not re-gain traction until the 1950s and 1960s.

 
Controlled burn in a slash pine forest

Uses

edit

Without regular fire intervals in slash pine forests, the ecosystem can change over time. For example, in the northern range for slash pine, forests can convert to from mesic flatwoods[12] to denser mixed hardwood canopies with trees such as oaks, hickory, and southern magnolia.[13] In South Florida, the Pine Rocklands can convert to a Rockland Hammock dominated by woody shrubs and invasive plants. Invasive species are a major management issue in the South. Many pine trees and native plants are adapted to fire, meaning they require fire disturbance to open their pine cones, germinate seeds, and cue other metabolic processes. Fire can be a good management strategy for invasive species because many invasive plants are not adapted to fire. Therefore, fire can eliminate the parental plant or reduce seed viability. Controlled burning is also used to help reduce pathogen load in an ecosystem. For example, fire can eliminate pest populations or resting fungal spores that could infect new seedlings. Low intensity burns can also clear space in the understory and provide nutrient pulses[14] that benefit the understory vegetation.

Fire is also used to prevent "fuel" buildup, the highly flammable plants such as grasses and scrub under the canopy which could burn easily in a wildfire. Most prescribed burn intervals are about every 2-5 years which allows the ecosystem to regenerate post-burn.[15] Much of the South Florida Pine Rockland ecosystem is highly fragmented and have [should be "has"] not been burned because of the proximity to businesses and homes.[13] Risks such as smoke, air quality, and residual particulate matter in the environment pose safety issues for controlled burns near homes and businesses.

Diseases and Pests

edit
 
Example of Fusiform Rust symptoms on pine tree bark

Fusiform Rust

edit

Starting in the late 1950’s the emergence of Fusiform Rust on South Eastern pine trees including slash pine (Pinus elliottii), loblolly pine, (Pinus taeda), and longleaf pine, (Pinus palustris) lead [should be "led"] to massive tree mortality within the pine industry. [7] This obligate parasitic pathogen is notorious for infecting young trees in newer planted areas within the first 1-5 years of growing. The pine industry was still rather new at the time of this initial outbreak, therefore, many newly planted forests had large-scale mortality because the trees were not yet old enough to be resilient to the disease or harvested.[7] Florida’s pine industry in particular was booming with an increase in plantation acreage from 291,000 acres in 1952 to upwards of 5.59 million acres in 1990. Because of the complicated lifecycle of Cronaritum quercuum f. sp. fusiforme, the fungal causal agent of Fusiform Rust, the management strategies of pruning diseased stems, reducing fertilization, and discarding infected seed were not sufficient enough to prevent million dollar annual loses. [7][16]

Rust pathogens are difficult to manage because of their complicated reproductive life cycles. Cronaritum querecuum f. sp. fusiforme is heteroecious, requiring two different plant hosts for reproduction, and is macrocyclic, meaning it contains all five spore stages typical for rust infections: basidiospores, teliospores, urediniospores, aeciospores, and spermatia. Oak trees are the secondary host for this pathogen[17]. The primary inoculum on pine are basidiospores which infect the pine needles in spring between March and May.[18] The basidiospores germinate and grow into the stems of the tree where the fungus can overwinter for 4-6 months in the wood. In the fall, the spermatia forms and fertilizes the aceiospores in the following spring. The aceiospores are released from the pine and are the primary inoculum that infect the oak trees in the following growing season. Aceiospores grow through the oak leaves producing urediniospores on the underside of the oak leaves. These urediniospores can reproduce clonally, asexually, and can continue to infect oak plants as a secondary inoculum. Within two weeks of the primary urediniospore inoculation on the oak tree, teliospores are formed which germinate into basidiospores that infect the pine trees and complete the life rust cycle. Symptoms on the pine include gall formation, stem swelling, cankers, bushiness, and dieback. [16][18] The cankers in the stem allow secondary fungal infections or other pests to enter the trees easily.[18]

Understanding the climate conditions that can lead to rust outbreaks is an important component for management strategies, but this was not well understood in the early decades of this epidemic.[7] More recent information has shown that certain weather patterns such as high humidity, wet pine needles, and temperatures around 15-29°C for approximately 18 days can increase the spread of basiodiospores and therefore increase disease severity. [18]  

The secondary host, oak, is another economically and ecologically important tree in the south east. Therefore, eradication of the secondary host is not only not possible but also not effective because basidiospores can travel up to a half mile, easily infecting pine trees that are far away. Therefore, a combination of management strategies such as reducing fertilization treatments (which can benefit the pathogen), planting more rust-disease resistant trees in plantations[7] and reintroducing fire to reduce the oak trees within the forest may help to reduce disease incidences.

 
Example of Pitch Canker symptoms on a slash pine tree

Pitch Canker

edit

Pitch canker, a monocyclic disease is [remove this "is"] caused by the fungus Fusarium circinatum (previously named Fusarium moniliforme var. subglutinans) [19] [18][add comma here] was first described in 1946 by Hepting and Roth. When it was first described there were low levels of disease until the 1970s when a massive epidemic of Pitch Canker caused mass tree mortality in Florida slash pine.[18] Some hypotheses suggests [remove "s"] that the pathogen may have originated in Mexico and was then introduced in Florida and later transmitted to California on diseased seed. The pathogen has been reported in Mexico, however, high fungal diversity and low tree mortality from the disease suggests that this pathogen may have co-evolved in Mexico before being introduced to other parts of the world. [20] Many reports describe the pathogen as endemic to Florida,[21] likely because the disease was introduce a long time ago that the population has become more diverse [please fix grammar here and rephrase so it makes sense].[22] By 1974, over half of the slash pine population in Florida was infected with Pitch Canker disease.[23] In areas where the pathogen is newly introduced, the fungal population is mostly clonal because there are fewer mating types within the population[22] and therefore sexual re [needed here]production may be lower.[20] Pitch Canker infects nearly all pine tree species including longleaf pine, short leaf pine, and eastern white pine.  

This disease continues to be a problem in nurseries and has been reported in other countries. [20] A major problem in Florida is that artificial replanting of pines may be contributing to high disease incidences[19]. The disease can be passed through seed and spores but requires open wounds to infect the tree from things like insect damage, mechanical damage, hail/weather damage. [22]

The predominant symptoms include needle chlorosis and reddening ofshoots (called “flagging”) that later die [18][23] [19][20]. Cankers or lesions form on the trunks turning the bark yellow or dark brown and exudes resin [fix grammar]. Stems may die and get crystalized in resin soaked lesions. Resin is generally produced in plants to protect against pathogens. Sometimes the tissue above the canker will die causing girdling of the stem.[19] The severity of the disease depends on weather related conditions and may require moisture and insect wounds or weather related wounds such as hail to infect the trees. Some insects such as bark beetles, spittle bugs, weevils[21], pine tip moth, and needle midge may vector the disease into the tree. [2][18][23] Pitch Canker was used to inoculate Pinus elliottii var. densa trees to try to increase resin production for extraction but this approach was ineffective. [23]

[The Uses section from the existing page should be included at the end here.]

  1. ^ Kral, Robert (1993). "Pinus elliottii". In Flora of North America Editorial Committee (ed.). Flora of North America North of Mexico (FNA). Vol. 2. New York and Oxford: Oxford University Press – via eFloras.org, Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA.
  2. ^ a b c d e f g Family, P. P. (1990). Pinus elliottii Engelm. slash pine. Silvics of North America: Conifers, (654), 338.
  3. ^ "Flora of the Southern and Mid-Atlantic States".
  4. ^ a b Carey, Jennifer H. 1992. Pinus elliottii. In: Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.fed.us/database/feis/plants/tree/pinell/all.html    
  5. ^ "Pine Rocklands" (PDF). United States Fish and Wildlife Service. Retrieved September 18, 2018.
  6. ^ Gilman, Edward F.; Dennis G. Watson (2006). "Pinus elliottii: Slash Pine". University of Florida, Institute of Food and Agricultural Sciences. Retrieved 12 April 2011.
  7. ^ a b c d e f Schmidt, Robert A. (2003-08). "Fusiform Rust of Southern Pines: A Major Success for Forest Disease Management". Phytopathology. 93 (8): 1048–1051. doi:10.1094/phyto.2003.93.8.1048. ISSN 0031-949X. {{cite journal}}: Check date values in: |date= (help)
  8. ^ Moore, Gerry; Kershner, Bruce; Craig Tufts; Daniel Mathews; Gil Nelson; Spellenberg, Richard; Thieret, John W.; Terry Purinton; Block, Andrew (2008). National Wildlife Federation Field Guide to Trees of North America. New York: Sterling. p. 74. ISBN 1-4027-3875-7.
  9. ^ "Flora of the Southern and Mid-Atlantic States".
  10. ^ Johnson, A. S., & Hale, P. E. (2000, September). The Historical Foundations of Prescribed Burning for Wildlife: a Southeastern Perspective. In The Role of Fire in Nongame Wildlife Management and Community Restoration: Traditional Uses and New Directions Proceedings of a Special Workshop(p. 11).
  11. ^ a b c Johnson, A. S., & Hale, P. E. (2000, September). The Historical Foundations of Prescribed Burning for Wildlife: a Southeastern Perspective. In The Role of Fire in Nongame Wildlife Management and Community Restoration: Traditional Uses and New Directions Proceedings of a Special Workshop(p. 11).
  12. ^ Horn, Sally P.; Grissino-Mayer, Henri D.; Harley, Grant L. (2013-06-03). "Fire history and forest structure of an endangered subtropical ecosystem in the Florida Keys, USA". International Journal of Wildland Fire. 22 (3): 394–404. doi:10.1071/WF12071. ISSN 1448-5516.
  13. ^ a b Snyder, J. R., Ross, M. S., Koptur, S., & Sah, J. (2005). Developing ecological criteria for prescribed fire in south Florida pine rockland ecosystems.
  14. ^ Lavoie, M., Starr, G., Mack, M. C., Martin, T. A., & Gholz, H. L. (2010). Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Natural Areas Journal, 30(1), 82-95.
  15. ^ Wade, D.D, Lunsford, J.D. (1988). A guide for prescribed fire in southern forests. Technical Publication R8-TP 11. https://www.fs.fed.us/rm/pubs/rmrs_gtr292/1989_wade.pdf
  16. ^ a b Lundquist, J. E. (1982). "Early Symptomatology of Fusiform Rust on Pine Seedlings". Phytopathology. 72 (1): 54. doi:10.1094/phyto-72-54. ISSN 0031-949X.
  17. ^ Gilman, E. F., & Watson, D. G. (1994). Pinus elliottii: Slash Pine. USDA Forest Service Fact Sheet ST-463 Google Scholar.
  18. ^ a b c d e f g h 1936-, Sinclair, Wayne A., (2005). Diseases of trees and shrubs. Comstock Pub. Associates. ISBN 0801443717. OCLC 60188468. {{cite book}}: |last= has numeric name (help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  19. ^ a b c d Barnard, E.L.; Blakesless, G.M. (2006). "Pitch Canker of Southern Pines" (PDF). Florida Depart of Agriculture and Consumer Services (PDF). {{cite web}}: Check |archive-url= value (help); Cite has empty unknown parameter: |dead-url= (help)
  20. ^ a b c d Gordon, T. R. 2006. Pitch canker disease of pines. Phytopathology 96:657-659.
  21. ^ a b Correll, J. C., Gordon, T. R., McCain, A. H., Fox, J. W., Koehler, C. S., Wood, D. L., & Schultz, M. E. (1991). Pitch canker disease in California: pathogenicity, distribution, and canker development on Monterey pine (Pinus radiata). Plant Disease, 75(7), 676-682.
  22. ^ a b c Gordon, T. R., Storer, A. J., & Okamoto, D. (1996). Population structure of the pitch canker pathogen, Fusarium subglutinans f. sp. pini, in California. Mycological Research, 100(7), 850-854.
  23. ^ a b c d Dwinell, David L. Barrows-Broaddus, Jane B. Kuhlman, G. E. (1985). Pitch Canker: A Disease Complex. Plant Disease, 69(3), 270–276.