User talk:Nbarth/Archive 2008
This is an archive of past discussions with User:Nbarth. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. |
Archive 2005 | Archive 2006 | Archive 2007 | Archive 2008 | Archive 2009 | Archive 2010 | → | Archive 2015 |
Whitehead lemma steinberg etc.
You added a bit about the derived subgroup of stable GL. If is not too hard, I would appreciate a systematic statement along the lines of "and it is totally false for GL(n,A) even for amazingly reasonable rings A" (including the integers and even some fields), especially if it could mention how to measure how close to true it is.
BTW there was a question on sci.math about whether stable GL determines the ring (up to ring isomorphism). I think it might not, but I think it might determine it up to Morita equivalence which was all that was really needed. Do you happen to know (or find the question interesting enough to find someone who does)?
Also, I've found irritating uses of Steinberg relations versus actual presentations of SL(n,A) for rings A and I am curious how different they are. Generically topologists have access to entirely too much algebra for my taste; it is so hard to figure out what they are talking about. You seem to have a good feel for it (though perhaps you are actually one of THEM), so I thought you might know a good place to find out about SL(n,A) versus Steinberg. I think I only care about amazingly well behaved rings A, like number rings, their fields of fractions (number fields), their completions (mathfrak{p}-adic integers and fields), and their residue fields (finite fields). Heck I might only care about maximal orders in quadratic fields; it is so hard to tell how general the implicit ideas are.
Oh and in the Steinberg group article, it might be good to litter the text with the word "stable", explaining a time or two that this is only about GL(oo,A) not GL(n,A). I keep thinking you are high when I see things like E(A) is perfect, or that the kernel of St(A)->GL(A) is the center of St(A). In fact that last part seems insane even for the stable GL, but I've come to accept stable things are unlike everything I've ever known. JackSchmidt (talk) 07:08, 2 January 2008 (UTC)
- (Responding to talk post)
- Thanks for the articles. They've been very helpful. No worries about the random questions.
- The GL(A) determining A was phrased in the form "K_n(A) is an invariant of GL(A) for positive n, how about for n=0", so it might still be interesting to you (though I still have no idea where to look). For non-commutative A, M_n(A) does not determine A, but does up to Morita equivalence. For commutative rings, Morita equivalence is just ring isomorphism, so I think it should be fine to add "A commutative" or "up to Morita equivalence". However, Units(R) does not determine R, and so GL_n(R) = GL_n(S) does not even imply that M_n(R)=M_n(S). I could not find any examples where this held for all n, so I am not sure if "stable" magically changes things here like it usually does.
- "Isn't always perfect (for ), due to the 2nd Steinberg relation (this struck you as insane)?"
- Perfection seems fine, just the idea that the kernel is the center. The "second center" of a perfect group is equal to the center. Saying that the kernel of St(A) to E(A) is the center of St(A) should imply that the center of E(A) is trivial, which, as far as I know, it is not. If St/Z(St) = E and St is perfect, then Z(E)=Z^2(St)/Z(St)=Z(St)/Z(St)=1. This doesn't seem kosher for A=Z/5Z for instance, where I think E_n=SL_n is perfect, and often has nontrivial center.
- Probably my mistake is in thinking Z(E_oo) is nontrivial, since Z(E_n(A)) is repeatedly (in n) trivial. JackSchmidt (talk) 23:39, 6 January 2008 (UTC)
- Oh and to be clear, I'm in a rush and mean that "should imply that the center of E(A) is trivial, which, as far as I know,
it is not" contains a mistake. I bet the center of E(A) is trivial. JackSchmidt (talk) 23:43, 6 January 2008 (UTC)
Higher centers
- Also discussed at User_talk:JackSchmidt/Archives/2008/01#UCS_:_Hypercenter_::_LCS_:_.3F.3F
(reply to talk post)
- "Higher center" is definitely common in spoken math. I think symbols Z^i or "upper central series" may be more common written, but I don't have sources nearby to check. The section looks nice. I linked to upper central series, but that is just a redirect. I can't decide if every little group theory definition needs its own article. I think User:Zundark is improving the Derived length / Derived series situation for soluble groups, so I've avoided thinking about what to do for central series of nilpotent groups. I like your merge of Gruen's lemma into perfect group. I'm pretty sure he has some more important lemmas that could be added eventually, but until then, that article was going to stay pretty stubby. JackSchmidt (talk) 01:30, 9 January 2008 (UTC)
- Today's stuff looks good.
- There is one point where your text implicitly assumes the reader knows that English ordinals like first, second, third, etc. are taken to imply set theoretic ordinals, including the infinite ones ("the hypercenter the union of the higher centers"), but it was not clear to me that making this explicit would actually reduce confusion. Those who only count using natural numbers are likely to be dealing with noetherian groups anyways, and those who count using set theoretic ordinals should just take it as given.
- Schenkman should be able to confirm properties of hypercentral groups. Locally nilpotent groups are slightly more general than hypercentral groups (if I recall correctly), and share most of the same properties. The maximal subgroup being normal worries me slightly, but probably it will be ok since the problem should only be that maximal subgroups need not exist. Hopefully I'll remember to check tonight. JackSchmidt (talk) 23:44, 15 January 2008 (UTC)
Thai names
On the one hand you say that Thai family names are required to be unique, and then you refer to a survey which shows that only 81% of names are in fact unique. This appears to be contradictory and needs explanation. Intelligent Mr Toad (talk) 02:21, 21 January 2008 (UTC)
(Wikibooks Welcome)
Welcome, Nbarth!
Getting started with Wikibooks |
---|
|
Come introduce yourself at the new users page. If you have any questions, you can ask there or contact me personally.-- – Mike.lifeguard | talk 20:58, 22 January 2008 (UTC)
External links on Canon/Photography articles
Hay Nbarth, I've noticed you have been making a lot of changes to most of the Canon lens/camera articles. Most edits are good, and are productive, but some are beyond the scope of wikipedia. What I am talking about is the abundance of external links, particularly to lens/camera review sites. External links should only be used, to reference text in the article. Using them otherwise, and in such abundance, can be considered Spamming. Now I thought about going trigger happy on your edits, and deleting the links, but I rather not be so abrupt and cruel. It sucks when you spend so much time editing, only to come back an few days later, and see somebody else made changes/deletion to them, and not understand why. I do NOT think you were intending to spam, so I rather give you the opportunity to understand why they should not be there, and remove the links yourself. This is not so much my view point, but the consensus of most wikipedia editors. Having so many external links, makes wikipedia look less like a encyclopedia, and more like a advertisement. While reviews are helpful for someone looking to buy a lens, wikipedia is not the place people should come to, for links to them. Rather, they should come to wikipedia to learn about them. If they want to buy the lens, camera, whatever... and find reviews, then that is what Google is for. If you want to talk further, reply here please. Thanks. Nebrot (talk) 03:10, 25 February 2008 (UTC)
Hello Nbarth. I noticed your recent observation that group identifiers form a prefix code. This does appear to illuminate one feature of how ISBNs work. I wonder if you know anything about the claimed acronym GIC. The cited source for 'group identifier' at isbn.org does not use the acronym GIC, or use the phrase 'group identifier code.' For instance, see [1]. Since 'GIC' has always puzzled me, and I wondered if it was a misunderstanding, do you know if that abbreviation is attested from somewhere else? Or perhaps it comes from a source that is not specific to ISBNs. The simpler 'group identifier' is the phrase that I am used to seeing. Thanks, EdJohnston (talk) 01:49, 1 March 2008 (UTC)
Hello
- Question asked an answered at: Wikipedia:Reference_desk/Archives/Mathematics/2008_March_31#cos.28.CF.80.2F2n.29
I've seen your important contributions for the article Recurrence relation. I'm looking for the general (non-iterative) non-trigonometric expression for the exact trigonometric constants of the form: , when n is natural (and is not given in advance). Do you know of any such general (non-iterative) non-trigonometric expression? (note that any exponential-expression-over-the-imaginaries is also excluded since it's trivially equivalent to a real-trigonometric expression).
- Let me explain: if we choose n=1 then the term becomes "0", which is a simple (non-trigonometric) constant. If we choose n=2 then the term becomes , which is again a non-trigonometric expression. etc. etc. Generally, for every natural n, the term becomes a non-trigonometric expression. However, when n is not given in advance, then the very expression per se - is a trigonometric expression. I'm looking for the general (non-iterative) non-trigonometric expression equivalent to , when n is not given in advance. If not for the cosine - then for the sine or the tangent or the cotangent.
Problem of Apollonius
I've left a message on Talk:Problem of Apollonius about an edit you recently made. Ozob (talk) 16:24, 10 June 2008 (UTC)
TfD nomination of Template:JSTOR
Template:JSTOR has been nominated for deletion. You are invited to comment on the discussion at the template's entry on the Templates for Deletion page. Thank you. ––Bender235 (talk) 09:46, 14 August 2008 (UTC)
Are meagre sets Fσ?
In meagre set, you wrote, "That is, a meagre set is an Fσ set (countable union of closed sets) made from nowhere dense sets." Is this actually true? The definition says that a meagre set is a union of countably many nowhere dense sets, which are not necessarily closed, so I don't see how it follows that meagre sets are Fσ. Similarly, a comeagre set is one which contains a countable intersection of dense open sets, but it may not itself be one, so I don't see why comeagre sets should be Gδ.
If it's true, I'd like to see a proof. It's not obvious from the definition, at least not to me.
--skeptical scientist (talk) 18:35, 31 August 2008 (UTC)
- You’re completely correct! Thanks – I’ve corrected it!
- A nowhere dense set need not be closed (e.g., ), but is contained in a nowhere dense closed set, and so forth.
- I got confused, but I believe it’s better now.
- Nils von Barth (nbarth) (talk) 18:59, 31 August 2008 (UTC)
reverted mergeto proposal
- See: User_talk:Dicklyon#Merge_Chebyshev_distance_.E2.86.92_Uniform_norm
- See: User_talk:Dicklyon#Shall_I_go_ahead_with_Uniform_.2F_Chebyshev_merge.3F
- See: Talk:Uniform norm#merge Chebyshev distance to Uniform norm
I reverted your orphaned (with no corresponding mergefrom and no discussion started) mergeto proposal on Chebyshev distance. Dicklyon (talk) 02:08, 8 September 2008 (UTC)
color scheme on Buddhist templates
- See: Template talk:Buddhism#Color Scheme
- See: User talk:Esteban.barahona#Buddhist template color schemes
fair enough. I disagree with the "all links should be 4 colors and 4 colors only", but honestly it only applies on a website-wide way. If in a website all links have 4 custom colors it doesn't matter, but if in all the website all links are the "classic four" it should be mantained for consistency. That means, we can use any colors for links, as long as it's consistent across the same website. I will change this links when I come up with a new design for the color scheme (probably a bit less than 1 week). Thanks for being so kind in arguing your position (...being kind is not that usual).--Esteban Barahona (talk) 05:27, 13 September 2008 (UTC)
Bootstrapping
I removed the "Meanings" heading because that would attract the anti-dictionary police who would want to destroy this article. Please do not mention meaning(s). Several of the articles need short summaries obtained from the corresponding Main articles. Greensburger (talk) 00:16, 13 October 2008 (UTC)
Spam in Edge Foundation (ADHD)
Hello, this is a message from an automated bot. A tag has been placed on Edge Foundation (ADHD), by another Wikipedia user, requesting that it be speedily deleted from Wikipedia. The tag claims that it should be speedily deleted because Edge Foundation (ADHD) is blatant advertising for a company, product, group, service or person that would require a substantial rewrite in order to become an encyclopedia article.
To contest the tagging and request that administrators wait before possibly deleting Edge Foundation (ADHD), please affix the template {{hangon}} to the page, and put a note on its talk page. If the article has already been deleted, see the advice and instructions at WP:WMD. Feel free to contact the bot operator if you have any questions about this or any problems with this bot, bearing in mind that this bot is only informing you of the nomination for speedy deletion; it does not perform any nominations or deletions itself. To see the user who deleted the page, click here CSDWarnBot (talk) 03:50, 24 November 2008 (UTC)
- No worries (yes, I realize this is a bot – this is for the record) – I was just refactoring it.
- Nils von Barth (nbarth) (talk) 15:27, 2 December 2008 (UTC)
TUSC token aec4156ae0b89175ae0d1e38cff6f49e
I am now proud owner of a TUSC account!
- Added by Toolserver bot
Hamfisted notation at “Quantity theory of money”
I don't care for the ham-fisted notation of the Chicago School, but I think that they want the plus-sign over the ‘ ’, and will move it accordingly. —SlamDiego←T 22:37, 7 December 2008 (UTC)
Dual polygon
Initial context setting
- Re: Coxeter element
Hello. I think the words
- In a Coxeter group,...
fail to tell the lay reader that mathematics is what the article is about. I've rephrased it. Michael Hardy (talk) 20:13, 13 December 2008 (UTC)
Coxeter element
Hello, you've gone through a number of articles and inserted a reference to the Coxeter element, whereas clearly what is meant is the longest element of a Coxeter group. I have rewritten the main article and corrected a couple more, but I do not have time to go through them all and revert/correct what you wrote. Would you, please, do it yourself? As a general rule, it is best to consult reliable sources before doing massive edits like that, just to make sure that it's not a waste of time. Cheers, Arcfrk (talk) 00:43, 15 December 2008 (UTC)