Wikipedia:Reference desk/Archives/Mathematics/2017 April 28

Mathematics desk
< April 27 << Mar | April | May >> April 29 >
Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


April 28

edit

line of sight from building height

edit

There's a simple formula for calculating your line of sight given a certain height H:  .

But what about the longest possible line of sight given two heights, H1 and H2? (Assuming spherical Earth of course) ECS LIVA Z (talk) 07:42, 28 April 2017 (UTC)[reply]

Just realized that when H1 = H2 it's simply twice of  . That's pretty cool. ECS LIVA Z (talk) 07:46, 28 April 2017 (UTC)[reply]
I think it might be   but I'm not sure. ECS LIVA Z (talk) 08:35, 28 April 2017 (UTC)[reply]
@ECS LIVA Z: Two heights of what?--Jasper Deng (talk) 09:30, 28 April 2017 (UTC)[reply]
Buildings, spherical cows, or really tall people would work too. ECS LIVA Z (talk) 10:09, 28 April 2017 (UTC)[reply]
Yes, that's right,  . In each case these longest sightlines are tangent to the Earth's surface. The longest sightline between the two heights is tangent to the surface at exactly the same place where the sightlines to the horizon from either of the two heights would be, so it's the same line and its length equals the sum of the horizon distances from the two heights. (Assuming not only spherical Earth, but no refraction of light, of course.) --76.71.6.254 (talk) 10:19, 28 April 2017 (UTC)[reply]
Thanks! ECS LIVA Z (talk) 10:31, 28 April 2017 (UTC)[reply]
  Resolved
Surely the formula is not dimensionless? —Tamfang (talk) 09:28, 1 May 2017 (UTC)[reply]
The given link your line of sight given a certain height H says "the height is given in metres, and distance in kilometres". PrimeHunter (talk) 10:47, 1 May 2017 (UTC)[reply]
Indeed. The full formula is:
 
where R is the radius of the Earth, 6,371 km. If we measure h in metres and we want d in km, then the constant has units of
 
and a value of
 
Gandalf61 (talk) 10:58, 1 May 2017 (UTC)[reply]

number of independent sets in a regular graph

edit

Hi all,
How many independent sets of size k are there in a d-regular graph on n vertices?
Thanks in advance — Preceding unsigned comment added by 185.120.126.40 (talk) 18:10, 28 April 2017 (UTC)[reply]

It depends on the graph, not just on d, n, k. (Compare the hexagon with two disjoint triangles, for example, with k = 3.) --JBL (talk) 20:06, 28 April 2017 (UTC)[reply]
Is there some lower bound on this number? (For the case the graph is connected) — Preceding unsigned comment added by 185.120.126.103 (talk) 08:58, 29 April 2017 (UTC)[reply]
Sure: it is certainly at least   -- after you've chosen j points, they and their neighbors make a set of size at most j(d+1) that you can't choose from again. (This is sharp exactly when the graph is a disjoint union of complete graphs.) --JBL (talk) 12:59, 29 April 2017 (UTC)[reply]

Space of connected acyclic graphs on N

edit

Consider the space of all connected acyclic graphs whose vertices are the elements of N. A basic clopen set is of the form   where   is an acyclic graph on  , and   is the set of all connected acyclic graphs that restrict to   on  . Is this space Polish?

The natural metric is  , where   is largest such that the restrictions of   and   agree on  , but this isn't complete. For example, for   odd, let   be the graph with an edge between   and   for every  , and an edge from   to  . Then  , but the limit isn't connected.--2406:E006:2C7:1:5CE9:32F9:4BCD:AEF3 (talk) 21:31, 28 April 2017 (UTC)[reply]

Answering my own question: yes. Define  , where   is largest such that for every  , the (unique) path from i to j in   is identical to the corresponding path in  .--2406:E006:2C7:1:10A1:247E:F704:923A (talk) 22:19, 28 April 2017 (UTC)[reply]