Wikipedia:Reference desk/Archives/Mathematics/2022 June 20

Mathematics desk
< June 19 << May | June | Jul >> Current desk >
Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


June 20

edit

orientability and simplicity

edit

Can a non-orientable n-manifold be simply connected? If n=2 I think not, but how about other n? —Tamfang (talk) 02:41, 20 June 2022 (UTC)[reply]

I have no experience in this area, so I can't confirm whether or not this is what you were looking for, but I found a StackExchange answer which, if I'm interpreting it correctly, implies the answer is no. GalacticShoe (talk) 05:27, 20 June 2022 (UTC)[reply]
Is a Moebius strip n=2? 2601:648:8202:350:0:0:0:90B2 (talk) 06:09, 20 June 2022 (UTC)[reply]
Yes, see Möbius strip § Surfaces of constant curvature: "[The Möbius strip] is the quotient space of a plane by a glide reflection, and (together with the plane, cylinder, torus, and Klein bottle) is one of only five two-dimensional complete flat manifolds." The Klein bottle is also non-orientable. However, neither the Möbius strip nor the Klein bottle is simply connected. Every simply connected manifold is orientable,[1] so this generalizes beyond surfaces.  --Lambiam 08:08, 20 June 2022 (UTC)[reply]
Oh I see. Yes I knew that the Moebius strip was 2-dimensional and had gotten confused about the concept of simply connectedness. I had been asking for confirmation that it is non-orientable. Thanks. 2601:648:8202:350:0:0:0:90B2 (talk) 17:54, 21 June 2022 (UTC)[reply]