Wikipedia:Reference desk/Archives/Mathematics/2024 September 22

Mathematics desk
< September 21 << Aug | September | Oct >> September 23 >
Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


September 22

edit

How can we briefly characterize a given set of vectors, as "linearly dependent - every proper sub set being linearly independent", while we only refer to the vectors rather than to their set?

edit

For example: S is a set of the following vectors:

A=(1,1,0),
B=(1,0,0),
C=(0,1,0).

Note: A=B+C, and B=A-C, and C=A-B, so the set S is linearly dependent.

Using A,B,C only, i.e without using S, what's the shortest description, claiming that the set S is linearly dependent but every proper sub set of S is linearly independent? HOTmag (talk) 13:30, 22 September 2024 (UTC)[reply]

@HOTmag: I'd just say 'S has k linearly independent elements' (in the give example k=2). --CiaPan (talk) 14:46, 22 September 2024 (UTC)[reply]
Is your response a suggestion of rephrasing my question?
If it's intended to be an answer, then please note: My condition requires to be "using A,B,C only, i.e without using S". Additionally, where does your description claim, that S is linearly dependent? HOTmag (talk) 14:56, 22 September 2024 (UTC)[reply]
One way to characterise the set is "a set of vectors, any one of which can be written in terms of the others in a unique way". The set is just A, B and C, i.e. any property of them is a property of the set of them. --2A04:4A43:900F:F4C3:49F4:4EFB:C442:608F (talk) 15:15, 22 September 2024 (UTC)[reply]
Since my condition requires to be "using A,B,C only, i.e without using S", so I guess you mean the following: "Each vector, can be written as a unique linear combination of the other vectors". Thanks. HOTmag (talk) 15:52, 22 September 2024 (UTC)[reply]
Assuming the vectors are  , form the matrix   whose columns are  . The stated condition is then:
  1. the matrix of   minors of   is zero, and
  2. each of the columns of the matrix of   minors of V has a non-zero entry.
- Tito Omburo (talk) 17:36, 22 September 2024 (UTC)[reply]
Your description, both uses sets, and also becomes longer than the original one indicated in the title. HOTmag (talk) 08:41, 23 September 2024 (UTC)[reply]
You can say, "each of the sets {A,B}, {A,C} and {B,C} is linearly independent".  --Lambiam 21:05, 22 September 2024 (UTC)[reply]
You also have to add that the set {A,B,C} is linearly dependent, but then the description - both uses sets, and also becomes longer than the original one indicated in the title. HOTmag (talk) 08:40, 23 September 2024 (UTC)[reply]
There is a unique linear combination generating 0, and in this linear combination all coefficients are nonzero.2404:2000:2000:8:FDE8:8311:95E3:654D (talk) 00:00, 23 September 2024 (UTC)[reply]
Yes, and by symbolic notation the description even becomes shorter. Thanks. HOTmag (talk) 08:42, 23 September 2024 (UTC)[reply]