Condensins are large protein complexes that play a central role in chromosome assembly and segregation during mitosis and meiosis (Figure 1).[1][2] Their subunits were originally identified as major components of mitotic chromosomes assembled in Xenopus egg extracts.[3]

Figure 1. An interphase nucleus (left) and a set of mitotic chromosomes (right) from human tissue culture cells. Bar, 10 μm.

Subunit composition

edit

Eukaryotic types

edit
 
Figure 2. Subunit composition of condensin complexes

Many eukaryotic cells possess two different types of condensin complexes, known as condensin I and condensin II, each of which is composed of five subunits (Figure 2).[4] Condensins I and II share the same pair of core subunits, SMC2 and SMC4, both belonging to a large family of chromosomal ATPases, known as SMC proteins (SMC stands for Structural Maintenance of Chromosomes).[5][6] Each of the complexes contains a distinct set of non-SMC regulatory subunits (a kleisin subunit[7] and a pair of HEAT repeat subunits).[8] Both complexes are large, having a total molecular mass of 650-700 kDa.

Complex Subunit Classification Vertebrates D. melanogaster C. elegans S. cerevisiae S. pombe A. thaliana C. merolae T. thermophila
condensin I & II SMC2 SMC ATPase CAP-E/SMC2 SMC2 MIX-1 Smc2 Cut14 CAP-E1&-E2 SMC2 Scm2
condensin I & II SMC4 SMC ATPase CAP-C/SMC4 SMC4/Gluon SMC-4 Smc4 Cut3 CAP-C SMC4 Smc4
condensin I CAP-D2 HEAT-IA CAP-D2 CAP-D2 DPY-28 Ycs4 Cnd1 CAB72176 CAP-D2 Cpd1&2
condensin I CAP-G HEAT-IB CAP-G CAP-G CAP-G1 Ycg1 Cnd3 BAB08309 CAP-G Cpg1
condensin I CAP-H kleisin CAP-H CAP-H/Barren DPY-26 Brn1 Cnd2 AAC25941 CAP-H Cph1,2,3,4&5
condensin II CAP-D3 HEAT-IIA CAP-D3 CAP-D3 HCP-6 - - At4g15890.1 CAP-D3 -
condensin II CAP-G2 HEAT-IIB CAP-G2 - CAP-G2 - - CAP-G2/HEB1 CAP-G2 -
condensin II CAP-H2 kleisin CAP-H2 CAP-H2 KLE-2 - - CAP-H2/HEB2 CAP-H2 -
condensin IDC SMC4 variant SMC ATPase - - DPY-27 - - - - -

The core subunits condensins (SMC2 and SMC4) are conserved among all eukaryotic species that have been studied to date. The non-SMC subunits unique to condensin I are also conserved among eukaryotes, but the occurrence of the non-SMC subunits unique to condensin II is highly variable among species.

  • For instance, the fruit fly Drosophila melanogaster does not have the gene for the CAP-G2 subunit of condensin II.[9] Other insect species often lack the genes for the CAP-D3 and/or CAP-H subunits, too, indicating that the non-SMC subunits unique to condensin II have been under high selection pressure during insect evolution.[10]
  • The nematode Caenorhabditis elegans possesses both condensins I and II. This species is, however, unique in the sense that it has a third complex (closely related to condensin I) that participates in chromosome-wide gene regulation, i.e., dosage compensation.[11] In this complex, known as condensin IDC, the authentic SMC4 subunit is replaced with its variant, DPY-27 (Figure 2).
  • Some species, like fungi (e.g., the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe), lack all regulatory subunits unique to condensin II.[12][13] On the other hand, the unicellular, primitive red alga Cyanidioschyzon merolae, whose genome size is comparable to those of the yeast, has both condensins I and II.[14] Thus, there is no apparent relationship between the occurrence of condensin II and the size of eukaryotic genomes.
  • The ciliate Tetrahymena thermophila has condensin I only. Nevertheless, there are multiple paralogs for two of its regulatory subunits (CAP-D2 and CAP-H), and some of them specifically localize to either the macronucleus (responsible for gene expression) or the micronucleus (responsible for reproduction).[15] Thus, this species has multiple condensin I complexes that have different regulatory subunits and display distinct nuclear localization.[16] This is a very unique property that is not found in other species.

Prokaryotic types

edit

Prokaryotic species also have condensin-like complexes that play an important role in chromosome (nucleoid) organization and segregation. The prokaryotic condensins can be classified into two types: SMC-ScpAB[17] and MukBEF.[18] Many eubacterial and archaeal species have SMC-ScpAB, whereas a subgroup of eubacteria (known as Gammaproteobacteria) including Escherichia coli has MukBEF. ScpA and MukF belong to a family of proteins called "kleisins",[7] whereas ScpB and MukE have recently been classified into a new family of proteins named "kite".[19]

Complex Subunit Classification B. subtilis Caulobacter E.coli
SMC-ScpAB SMC ATPase SMC/BsSMC SMC -
SMC-ScpAB ScpA kleisin ScpA ScpA -
SMC-ScpAB ScpB kite ScpB ScpB -
MukBEF MukB ATPase - - MukB
MukBEF MukE kite - - MukE
MukBEF MukF kleisin - - MukF

Despite highly divergent primary structures of their corresponding subunits between SMC-ScpAB and MukBEF, it is reasonable to consider that the two complexes play similar if not identical functions in prokaryotic chromosome organization and dynamics, based on their molecular architecture and their defective cellular phenotypes. Both complexes are therefore often called prokaryotic (or bacterial) condensins. Recent studies report the occurrence of a third complex related to MukBEF (termed MksBEF) in some bacterial species.[20]

Molecular mechanisms

edit

Molecular structures

edit
 
Figure 3. Structure of an SMC dimer

SMC dimers that act as the core subunits of condensins display a highly characteristic V-shape, each arm of which is composed of anti-parallel coiled-coils (Figure 3; see SMC proteins for details).[21][22] The length of each coiled-coil arm reaches ~50 nm, which corresponds to the length of ~150 bp of double-stranded DNA (dsDNA). In eukaryotic condensin I and II complexes, a kleisin subunit bridges the two head domains of an SMC dimer, and binds to two HEAT repeat subunits (Figure 1).[23][24]

Early studies elucidated the structure of parts of bacterial condensins, such as MukBEF[25][26] and SMC-ScpA.[27][28] In eukaryotic complexes, several structures of subcomplexes and subdomains have been reported, including the hinge and arm domains of an SMC2-SMC4 dimer,[29][30] a CAP-G(ycg1)/CAP-H(brn1) subcomplex,[31][32] and a CAP-D2(ycs4)/CAP-H(brn1) subcomplex.[24] A recent cryo-EM study has shown that condensin undergoes large conformational changes that are coupled with ATP-binding and hydrolysis by its SMC subunits.[33] On the other hand, fast-speed atomic force microscopy has demonstrated that the arms of an SMC dimer is far more flexible than was expected.[34]

Molecular activities

edit

Condensin I purified from Xenopus egg extracts is a DNA-stimulated ATPase and displays the ability to introduce positive superhelical tension into dsDNA in an ATP-hydrolysis-dependent manner (positive supercoiling activity).[35][36] Similar activities have been detected in condensins from other organisms.[37][38] The positive supercoiling activity is activated in vitro by Cdk1 phosphorylation, suggesting that it is likely one of the physiological activities directly involved in mitotic chromosome assembly.[39] It is postulated that this activity of condensin I helps fold DNA and promotes topoisomerase II-mediated resolution of sister chromatids.[40] Early single-DNA-molecule experiments also demonstrated in real time that condensin I is able to compact DNA in an ATP-hydrolysis dependent manner.[41]

Most recently, single-molecule experiments have demonstrated that budding yeast condensin I is able to translocate along dsDNA (motor activity)[42] and to "extrude" DNA loops (loop extrusion activity)[43] in an ATP hydrolysis-dependent manner. In the latter experiments, the activity of individual condensin complexes on DNA was visualized by real-time fluorescence imaging, revealing that condensin I indeed is a fast loop-extruding motor and that a single condensin I complex can extrude 1,500 bp of DNA per second in a strictly ATP-dependent manner. It has been proposed that condensin I anchors DNA between Ycg1-Brn1 subunits[31] and pulls DNA asymmetrically to form large loops. Moreover, it has been shown that condensin complexes can traverse each other, forming dynamic loop structures and changing their sizes.[44]

It is unknown how condensins might act on nucleosomal DNA. Recent development of a reconstitution system has identified the histone chaperone FACT as an essential component of condensin I-mediated chromosome assembly in vitro, providing an important clue to this problem.[45] It has also been shown that condensins can assemble chromosome-like structures in cell-free extracts even under the condition where nucleosome assembly is largely suppressed.[46] This observation indicates that condensins can work at least in part on non-nucleosomal DNA in a physiological setting.

How similar and how different are the molecular activities of condensin I and condensin II? Both share two SMC subunits, but each has three unique non-SMC subunits (Figure 2). A fine-tuned balance between the actions of these non-SMC subunits could determine the differences in the rate of loop extrusion [47] and the activity of mitotic chromosome assembly [48][49][50][51] of the two complexes. By introducing different mutations, it is possible to convert condensin I into a complex with condensin II-like activities and vice versa.[51]

Mathematical modeling

edit

Several attempts on mathematical modeling and computer simulation of mitotic chromosome assembly, based on molecular activities of condensins, have been reported. Representative ones include modeling based on loop extrusion,[52] stochastic pairwise contacts[53] and a combination of looping and inter-condensin attractions.[54]

Functions in chromosome assembly and segregation

edit

Mitosis

edit
 
Figure 4. Chromosome dynamics during mitosis in eukaryotes
 
Figure 5. Distribution of condensin I (green) and condensin II (red) in human metaphase chromosomes. Bar, 1 μm.

In human tissue culture cells, the two condensin complexes are regulated differently during the mitotic cell cycle (Figure 4).[55][56] Condensin II is present within the cell nucleus during interphase and participates in an early stage of chromosome condensation within the prophase nucleus. On the other hand, condensin I is present in the cytoplasm during interphase, and gains access to chromosomes only after the nuclear envelope breaks down (NEBD) at the end of prophase. During prometaphase and metaphase, condensin I and condensin II cooperate to assemble rod-shaped chromosomes, in which two sister chromatids are fully resolved. Such differential dynamics of the two complexes is observed in Xenopus egg extracts,[57] mouse oocytes,[58] and neural stem cells,[59] indicating that it is part of a fundamental regulatory mechanism conserved among different organisms and cell types. It is most likely that this mechanism ensures the ordered action of the two complexes, namely, condensin II first and condensin I later.[60]

On metaphase chromosomes, condensins I and II are both enriched in the central axis in a non-overlapping fashion (Figure 5). Depletion experiments in vivo[4][59][61] and immunodepletion experiments in Xenopus egg extracts[57] demonstrate that the two complexes have distinct functions in assembling metaphase chromosomes. Cells deficient in condensin functions are not arrested at a specific stage of cell cycle, displaying chromosome segregation defects (i.e., anaphase bridges) and progressing through abnormal cytokinesis.[62][63]

The relative contribution of condensins I and II to mitosis varies among different eukaryotic species. For instance, each of condensins I and II plays an essential role in embryonic development in mice.[59] They have both overlapping and non-overlapping functions during the mitotic cell cycle. On the other hand, condensin II is non-essential for mitosis in the primitive alga C. merolae[14] and the land plant A. thaliana.[64] Curiously, condensin II plays a dominant role over condensin I in the C. elegans early embryos.[11] This peculiarity could be due to the fact that C. elegans has a specialized chromosome structure known as holocentric chromosomes. Fungi, such as S. cerevisiae[13] and S. pombe[12] have no condensin II from the first. These differences among eukaryotic species provide important implications in the evolution of chromosome architecture (see the section of "Evolutionary implications" below).

species M. musculus D. melanogaster C. elegans S. cerevisiae S. pombe A. thaliana C. merolae
genome size ~2,500 Mb 140 Mb 100 Mb 12 Mb 14 Mb 125 Mb 16 Mb
condensin I essential essential minor essential essential essential essential
condensin II essential non-essential essential - - non-essential non-essential

It has recently become possible that cell cycle-dependent structural changes of chromosomes are monitored by a genomics-based method known as Hi-C (High-throughput chromosome conformation capture).[65] The impact of condensin deficiency on chromosome conformation has been addressed in budding yeast,[66][67] fission yeast,[68][69] and the chicken DT40 cells.[70] The outcome of these studies strongly supports the notion that condensins play crucial roles in mitotic chromosome assembly and that condensin I and II have distinct functions in this process. Moreover, quantitative imaging analyses allow researchers to count the number of condensin complexes present on human metaphase chromosomes.[71]

Meiosis

edit

Condensins also play important roles in chromosome assembly and segregation in meiosis. Genetic studies have been reported in S. cerevisiae,[72] D. melanogaster,[73][74] and C. elegans.[75] In mice, requirements for condensin subunits in meiosis have been addressed by antibody-mediated blocking experiments[58] and conditional gene knockout analyses.[76] In mammalian meiosis I, the functional contribution of condensin II appears bigger than that of condensin I. As has been shown in mitosis,[59] however, the two condensin complexes have both overlapping and non-overlapping functions, too, in meiosis. Unlike cohesin, no meiosis-specific subunits of condensins have been identified so far.

Chromosomal functions outside of mitosis or meiosis

edit

Recent studies have shown that condensins participate in a wide variety of chromosome functions outside of mitosis or meiosis.[60]

  • In budding yeast, condensin I (the sole condensin in this organism) is involved in copy number regulation of the rDNA repeat[77] as well as in clustering of the tRNA genes.[78]
  • In fission yeast, condensin I is involved in the regulation of replicative checkpoint[79] and clustering of genes transcribed by RNA polymerase III.[80]
  • In C. elegans, a third condensin complex (condensin IDC) related to condensin I regulates higher-order structure of X chromosomes as a major regulator of dosage compensation.[81]
  • In D. melanogaster, condensin II subunits contribute to the dissolution of polytene chromosomes[82] and the formation of chromosome territories[83] in ovarian nurse cells. Evidence is available that they negatively regulate transvection in diploid cells. It has also been reported that condensin I components are required to ensure correct gene expression in neurons following cell-cycle exit.[84]
  • In A. thaliana, condensin II is essential for tolerance of excess boron stress, possibly by alleviating DNA damage.[64]
  • In mammalian cells, it is likely that condensin II is involved in the regulation of interphase chromosome architecture and function. For instance, in human cells, condensin II participates in the initiation of sister chromatid resolution during S phase, long time before mitotic prophase when sister chromatids become cytologically visible.[85]
  • In mouse interphase nuclei, pericentromeric heterochromatin on different chromosomes associates with each other, forming a large structure known as chromocenters. Cells deficient in condensin II, but not in condensin I, display hyperclustering of chromocenters, indicating that condensin II has a specific role in suppressing chromocenter clustering.[59]
  • Whilst early studies suggested the possibility that condensins may directly participate in regulating gene expression, some recent studies argue against this hypothesis.[86][87]
  • Mutants of the fission yeast Schizosaccharomyces pombe were obtained that had a temperature sensitive and/or DNA damage sensitive phenotype.[88] Some of these mutants were defective in the HEAT subunits of condensin indicating that the HEAT subunits are required for DNA repair.[88]

Posttranslational modifications and cell cycle regulation

edit

Condensin subunits are subject to various post-translational modifications in a cell cycle-dependent manner.[89] Among these, phosphorylation in mitosis is the best studied.[90]

Phosphorylation by Cdk1 is essential for condensin I's supercoiling activity[39][38] and chromosome assembly activity[45] in vitro. However, the target subunits and sites (and number) of phosphorylation essential for activation are not known. S/TP sequences, the primary targets of Cdk1, tend to be enriched in intrinsically disordered regions (IDRs) located at the ends of condensin subunits,[90] but their distribution and contribution to the regulation of condensin vary widely among different species. For example, in fission yeast, phosphorylation of the N-terminus of the SMC4 subunit regulates nuclear translocation of condensin during mitosis.[12] In budding yeast, condensin localizes to the nucleus throughout the cell cycle, and phosphorylation of the N-terminus of the SMC4 subunit is involved in the regulation of chromosome association dynamics of condensin.[91][92] In vertebrates, it has been proposed that N-terminal phosphorylation of the CAP-H subunit promotes mitosis-specific loading of condensin I.[93] In addition to Cdk1, positive regulation by Aurora B[94][95] and Polo[38] and negative regulation by CK2 (casein kinase 2)[96] have been reported.

Several mitotic kinases, Cdk1,[97][98][50][51] polo[99] and Mps1[100] are involved in condensin II regulation. It has been shown that the C-terminal tail of the CAP-D3 subunit is a major target for Cdk1 phosphorylation in the human condensin II complex.[51] Moreover, CAP-D3 has been identified as a substrate of the protein phosphatase PP2A-B55.[101]

It has been reported that the CAP-H2 subunit of condensin II is degraded in Drosophila through the action of the SCFSlimb ubiquitin ligase.[102]

Relevance to diseases

edit

It was demonstrated that MCPH1, one of the proteins responsible for human primary microcephaly, has the ability to negatively regulate condensin II.[103] In mcph1 patient cells, condensin II (but not condensin I) is hyperactivated, leading to premature chromosome condensation in G2 phase (i.e., before entering mitosis).[104] There is no evidence, however, that misregulation of condensin II is directly related to the etiology of mcph1 microcephaly. More recently, it has been reported that hypomorphic mutations in condensin I or II subunits cause microcephaly in humans.[105] In mice, hypomorphic mutations in condensin II subunits cause specific defects in T cell development,[106] leading to T cell lymphoma.[107] It is interesting to note that cell types with specialized cell division modes, such as neural stem cells and T cells, are particularly susceptible to mutations in condensin subunits.

Evolutionary implications

edit

Prokaryotes have primitive types of condensins,[17][18] indicating that the evolutionary origin of condensins precede that of histones. The fact that condensins I and II are widely conserved among extant eukaryotic species strongly implicates that the last eukaryotic common ancestor (LECA) had both complexes.[60] It is therefore reasonable to speculate that some species such as fungi have lost condensin II during evolution.

Then why do many eukaryotes have two different condensin complexes? As discussed above, the relative contribution of condensins I and II to mitosis varies among different organisms. They play equally important roles in mammalian mitosis, whereas condensin I has a predominant role over condensin II in many other species. In those species, condensin II might have been adapted for various non-essential functions other than mitosis.[64][82] Although there is no apparent relationship between the occurrence of condensin II and the size of genomes, it seems that the functional contribution of condensin II becomes big as the genome size increases.[14][59] A recent, comprehensive Hi-C study argues from an evolutionary point of view that condensin II acts as a determinant that converts post-mitotic Rabl configurations into interphase chromosome territories.[108] The relative contribution of the two condensin complexes to mitotic chromosome architecture also change during development, making an impact on the morphology of mitotic chromosomes.[57] Thus, the balancing act of condensins I and II is apparently fine-tuned in both evolution and development.

Relatives

edit

Eukaryotic cells have two additional classes of SMC protein complexes. Cohesin contains SMC1 and SMC3 and is involved in sister chromatid cohesion. The SMC5/6 complex contains SMC5 and SMC6 and is implicated in recombinational repair.

See also

edit

References

edit
  1. ^ Hirano T (2016). "Condensin-based chromosome organization from bacteria to vertebrates". Cell. 164 (5): 847–857. doi:10.1016/j.cell.2016.01.033. PMID 26919425.
  2. ^ Kalitsis P, Zhang T, Marshall KM, Nielsen CF, Hudson DF (2017). "Condensin, master organizer of the genome". Chromosome Res. 25 (1): 61–76. doi:10.1007/s10577-017-9553-0. PMID 28181049. S2CID 28241964.
  3. ^ Hirano T, Kobayashi R, Hirano M (1997). "Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein". Cell. 89 (4): 511–21. doi:10.1016/S0092-8674(00)80233-0. PMID 9160743. S2CID 15061740.
  4. ^ a b Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003). "Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells". Cell. 115 (1): 109–21. doi:10.1016/s0092-8674(03)00724-4. PMID 14532007. S2CID 18811084.
  5. ^ Uhlmann F (2016). "SMC complexes: from DNA to chromosomes". Nat. Rev. Mol. Cell Biol. 17 (7): 399–412. doi:10.1038/nrm.2016.30. PMID 27075410. S2CID 20398243.
  6. ^ Yatskevich S, Rhodes J, Nasmyth K (2019). "Organization of chromosomal DNA by SMC complexes". Annu. Rev. Genet. 53: 445–482. doi:10.1146/annurev-genet-112618-043633. PMID 31577909.
  7. ^ a b Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003). "Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners". Mol. Cell. 11 (3): 571–5. doi:10.1016/S1097-2765(03)00108-4. PMID 12667442.
  8. ^ Neuwald AF, Hirano T (2000). "HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions". Genome Res. 10 (10): 1445–52. doi:10.1101/gr.147400. PMC 310966. PMID 11042144.
  9. ^ Herzog S, Nagarkar Jaiswal S, Urban E, Riemer A, Fischer S, Heidmann SK (2013). "Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I". PLOS Genet. 9 (4): e1003463. doi:10.1371/journal.pgen.1003463. PMC 3630105. PMID 23637630.
  10. ^ King, Thomas D; Leonard, Christopher J; Cooper, Jacob C; Nguyen, Son; Joyce, Eric F; Phadnis, Nitin; Takahashi, Aya (October 2019). "Recurrent Losses and Rapid Evolution of the Condensin II Complex in Insects". Molecular Biology and Evolution. 36 (10): 2195–2204. doi:10.1093/molbev/msz140. PMC 6759200. PMID 31270536.
  11. ^ a b Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I, Thompson J, Sarkeshik A, Yates J, Meyer BJ, Hagstrom K (2009). "Three distinct condensin complexes control C. elegans chromosome dynamics". Curr. Biol. 19 (1): 9–19. doi:10.1016/j.cub.2008.12.006. PMC 2682549. PMID 19119011.
  12. ^ a b c Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M (1999). "Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4". Genes Dev. 13 (17): 2271–83. doi:10.1101/gad.13.17.2271. PMC 316991. PMID 10485849.
  13. ^ a b Freeman L, Aragon-Alcaide L, Strunnikov A (2000). "The condensin complex governs chromosome condensation and mitotic transmission of rDNA". J. Cell Biol. 149 (4): 811–824. doi:10.1083/jcb.149.4.811. PMC 2174567. PMID 10811823.
  14. ^ a b c Fujiwara T, Tanaka K, Kuroiwa T, Hirano T (2013). "Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae". Mol. Biol. Cell. 24 (16): 2515–27. doi:10.1091/mbc.E13-04-0208. PMC 3744952. PMID 23783031.
  15. ^ Howard-Till R, Loidl J (2018). "Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila". Mol. Biol. Cell. 29 (4): 466–478. doi:10.1091/mbc.E17-07-0451. PMC 6014175. PMID 29237819.
  16. ^ Howard-Till, Rachel; Tian, Miao; Loidl, Josef; Cohen-Fix, Orna (15 May 2019). "A specialized condensin complex participates in somatic nuclear maturation in". Molecular Biology of the Cell. 30 (11): 1326–38. doi:10.1091/mbc.E18-08-0487. PMC 6724606. PMID 30893010.
  17. ^ a b Mascarenhas J, Soppa J, Strunnikov AV, Graumann PL (2002). "Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein". EMBO J. 21 (12): 3108–18. doi:10.1093/emboj/cdf314. PMC 126067. PMID 12065423.
  18. ^ a b Yamazoe M, Onogi T, Sunako Y, Niki H, Yamanaka K, Ichimura T, Hiraga S (1999). "Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli". EMBO J. 18 (21): 5873–84. doi:10.1093/emboj/18.21.5873. PMC 1171653. PMID 10545099.
  19. ^ Palecek JJ, Gruber S (2015). "Kite proteins: a superfamily of SMC/kleisin partners conserved across Bacteria, Archaea, and Eukaryotes". Structure. 23 (12): 2183–90. doi:10.1016/j.str.2015.10.004. PMID 26585514.
  20. ^ Petrushenko ZM, She W, Rybenkov VV (2011). "A new family of bacterial condensins". Mol. Microbiol. 81 (4): 881–896. doi:10.1111/j.1365-2958.2011.07763.x. PMC 3179180. PMID 21752107.
  21. ^ Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998). "The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge". J. Cell Biol. 142 (6): 1595–1604. doi:10.1083/jcb.142.6.1595. PMC 2141774. PMID 9744887.
  22. ^ Anderson DE, Losada A, Erickson HP, Hirano T (2002). "Condensin and cohesin display different arm conformations with characteristic hinge angles". J. Cell Biol. 156 (6): 419–424. doi:10.1083/jcb.200111002. PMC 2173330. PMID 11815634.
  23. ^ Onn I, Aono N, Hirano M, Hirano T (2007). "Reconstitution and subunit geometry of human condensin complexes". EMBO J. 26 (4): 1024–34. doi:10.1038/sj.emboj.7601562. PMC 1852836. PMID 17268547.
  24. ^ a b Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH (2019). "Structural basis of an asymmetric condensin ATPase cycle". Mol Cell. 74 (6): 1175–88.e24. doi:10.1016/j.molcel.2019.03.037. PMC 6591010. PMID 31226277.
  25. ^ Fennell-Fezzie R, Gradia SD, Akey D, Berger JM (2005). "The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins". EMBO J. 24 (11): 1921–30. doi:10.1038/sj.emboj.7600680. PMC 1142612. PMID 15902272.
  26. ^ Woo JS, Lim JH, Shin HC, Suh MK, Ku B, Lee KH, Joo K, Robinson H, Lee J, Park SY, Ha NC, Oh BH (2009). "Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions". Cell. 136 (1): 85–96. doi:10.1016/j.cell.2008.10.050. PMID 19135891. S2CID 4608756.
  27. ^ Bürmann F, Shin HC, Basquin J, Soh YM, Giménez-Oya V, Kim YG, Oh BH, Gruber S (2013). "An asymmetric SMC-kleisin bridge in prokaryotic condensin". Nat. Struct. Mol. Biol. 20 (3): 371–9. doi:10.1038/nsmb.2488. PMID 23353789. S2CID 21584205.
  28. ^ Kamada K, Miyata M, Hirano T (2013). "Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB". Structure. 21 (4): 581–594. doi:10.1016/j.str.2013.02.016. PMID 23541893.
  29. ^ Griese JJ, Witte G, Hopfner KP (2010). "Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins". Nucleic Acids Res. 38 (10): 3454–65. doi:10.1093/nar/gkq038. PMC 2879519. PMID 20139420.
  30. ^ Soh Y, Bürmann F, Shin H, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong M, Durand-Diebold M, Kim Y, Kim HM, Lee NK, Sato M, Oh B, Gruber S (2015). "Molecular basis for SMC rod formation and its dissolution upon DNA binding". Mol. Cell. 57 (2): 290–303. doi:10.1016/j.molcel.2014.11.023. PMC 4306524. PMID 25557547.
  31. ^ a b Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH (2017). "Structural basis for a safety-belt mechanism that anchors condensin to chromosomes". Cell. 171 (3): 588–600.e24. doi:10.1016/j.cell.2017.09.008. PMC 5651216. PMID 28988770.
  32. ^ Hara, Kodai; Kinoshita, Kazuhisa; Migita, Tomoko; Murakami, Kei; Shimizu, Kenichiro; Takeuchi, Kozo; Hirano, Tatsuya; Hashimoto, Hiroshi (12 March 2019). "Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex". EMBO Reports. 20 (5). doi:10.15252/embr.201847183. PMC 6501013. PMID 30858338.
  33. ^ Lee BG, Merkel F, Allegretti M, Hassler M, Cawood C, Lecomte L, O'Reilly FJ, Sinn LR, Gutierrez-Escribano P, Kschonsak M, Bravo S, Nakane T, Rappsilber J, Aragon L, Beck M, Löwe J, Haering CH (2020). "Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism". Nat Struct Mol Biol. 27 (8): 743–751. doi:10.1038/s41594-020-0457-x. PMC 7610691. PMID 32661420.
  34. ^ Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C (2016). "Condensin Smc2-Smc4 dimers are flexible and dynamic". Cell Rep. 14 (8): 1813–8. doi:10.1016/j.celrep.2016.01.063. PMC 4785793. PMID 26904946.
  35. ^ Kimura K, Hirano T (1997). "ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation". Cell. 90 (4): 625–634. doi:10.1016/s0092-8674(00)80524-3. PMID 9288743. S2CID 15876604.
  36. ^ Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999). "13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation". Cell. 98 (2): 239–248. doi:10.1016/s0092-8674(00)81018-1. PMID 10428035. S2CID 16671030.
  37. ^ Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002). "C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis". Genes Dev. 16 (6): 729–742. doi:10.1101/gad.968302. PMC 155363. PMID 11914278.
  38. ^ a b c St-Pierre J, Douziech M, Bazile F, Pascariu M, Bonneil E, Sauvé V, Ratsima H, D'Amours D (2009). "Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity". Mol Cell. 120 (Pt 7): 1245–55. doi:10.1016/j.molcel.2009.04.013. PMID 19481522.
  39. ^ a b Kimura K, Hirano M, Kobayashi R, Hirano T (1998). "Phosphorylation and activation of 13S condensin by Cdc2 in vitro". Science. 282 (5388): 487–490. Bibcode:1998Sci...282..487K. doi:10.1126/science.282.5388.487. PMID 9774278.
  40. ^ Baxter J, Sen N, Martínez VL, De Carandini ME, Schvartzman JB, Diffley JF, Aragón L (2011). "Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes". Science. 331 (6022): 1328–32. Bibcode:2011Sci...331.1328B. doi:10.1126/science.1201538. PMID 21393545. S2CID 34081946.
  41. ^ Strick TR, Kawaguchi T, Hirano T (2004). "Real-time detection of single-molecule DNA compaction by condensin I". Curr. Biol. 14 (10): 874–880. doi:10.1016/j.cub.2004.04.038. PMID 15186743. S2CID 10078994.
  42. ^ Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017). "The condensin complex is a mechanochemical motor that translocates along DNA". Science. 358 (6363): 672–6. Bibcode:2017Sci...358..672T. doi:10.1126/science.aan6516. PMC 5862036. PMID 28882993.
  43. ^ Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018). "Real-time imaging of DNA loop extrusion by condensin". Science. 360 (6384): 102–5. Bibcode:2018Sci...360..102G. doi:10.1126/science.aar7831. PMC 6329450. PMID 29472443.
  44. ^ Kim E, Kerssemakers J, Shaltiel IA, Haering CH, Dekker C (2020). "DNA-loop extruding condensin complexes can traverse one another". Nature. 579 (7799): 438–442. Bibcode:2020Natur.579..438K. doi:10.1038/s41586-020-2067-5. PMID 32132705. S2CID 212407150.
  45. ^ a b Shintomi K, Takahashi TS, Hirano T (2015). "Reconstitution of mitotic chromatids with a minimum set of purified factors". Nat Cell Biol. 17 (8): 1014–23. doi:10.1038/ncb3187. PMID 26075356. S2CID 8332012.
  46. ^ Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T (2017). "Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts". Science. 356 (6344): 1284–7. Bibcode:2017Sci...356.1284S. doi:10.1126/science.aam9702. PMID 28522692.
  47. ^ Kong M, Cutts EE, Pan D, Beuron F, Kaliyappan T, Xue C, Morris EP, Musacchio A, Vannini A, Greene EC (2020). "Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA". Mol. Cell. 79 (1): 99–114. doi:10.1016/j.molcel.2020.04.026. PMC 7335352. PMID 32445620.
  48. ^ Kinoshita K, Kobayashi TJ, Hirano T (2015). "Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes". Dev Cell. 33 (1): 94–106. doi:10.1016/j.devcel.2015.01.034. PMID 25850674.
  49. ^ Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T (2022). "A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping". J Cell Biol. 221 (3): e202109016. doi:10.1083/jcb.202109016. PMC 8932526. PMID 35045152.
  50. ^ a b Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T (2022). "Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays". eLife. 11: e78984. doi:10.7554/eLife.78984. PMC 9433093. PMID 35983835.
  51. ^ a b c d Yoshida MM, Kinoshita K, Shintomi K, Aizawa Y, Hirano T (2023). "Regulation of condensin II by self-suppression and release mechanisms". Mol Biol Cell. 35 (2): mbcE23100392. doi:10.1091/mbc.E23-10-0392. PMC 10881152. PMID 38088875.
  52. ^ Goloborodko, Anton; Imakaev, Maxim V; Marko, John F; Mirny, Leonid (18 May 2016). "Compaction and segregation of sister chromatids via active loop extrusion". eLife. 5. doi:10.7554/eLife.14864. PMC 4914367. PMID 27192037.
  53. ^ Cheng, Tammy MK; Heeger, Sebastian; Chaleil, Raphaël AG; Matthews, Nik; Stewart, Aengus; Wright, Jon; Lim, Carmay; Bates, Paul A; Uhlmann, Frank (29 April 2015). "A simple biophysical model emulates budding yeast chromosome condensation". eLife. 4: e05565. doi:10.7554/eLife.05565. PMC 4413874. PMID 25922992.
  54. ^ Sakai, Yuji; Mochizuki, Atsushi; Kinoshita, Kazuhisa; Hirano, Tatsuya; Tachikawa, Masashi; Morozov, Alexandre V. (18 June 2018). "Modeling the functions of condensin in chromosome shaping and segregation". PLOS Computational Biology. 14 (6): e1006152. Bibcode:2018PLSCB..14E6152S. doi:10.1371/journal.pcbi.1006152. PMC 6005465. PMID 29912867.
  55. ^ Ono T, Fang Y, Spector DL, Hirano T (2004). "Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells". Mol. Biol. Cell. 15 (7): 3296–308. doi:10.1091/mbc.E04-03-0242. PMC 452584. PMID 15146063.
  56. ^ Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004). "Distinct functions of condensin I and II in mitotic chromosome assembly". J. Cell Sci. 117 (Pt 26): 6435–45. doi:10.1242/jcs.01604. PMID 15572404.
  57. ^ a b c Shintomi K, Hirano T (2011). "The relative ratio of condensin I to II determines chromosome shapes". Genes Dev. 25 (14): 1464–9. doi:10.1101/gad.2060311. PMC 3143936. PMID 21715560.
  58. ^ a b Lee J, Ogushi S, Saitou M, Hirano T (2011). "Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes". Mol. Biol. Cell. 22 (18): 3465–77. doi:10.1091/mbc.E11-05-0423. PMC 3172270. PMID 21795393.
  59. ^ a b c d e f Nishide K, Hirano T (2014). "Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions". PLOS Genet. 10 (12): e1004847. doi:10.1371/journal.pgen.1004847. PMC 4256295. PMID 25474630.
  60. ^ a b c Hirano T (2012). "Condensins: universal organizers of chromosomes with diverse functions". Genes Dev. 26 (4): 1659–78. doi:10.1101/gad.194746.112. PMC 3418584. PMID 22855829.
  61. ^ Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KH, Hudson DF (2012). "Contrasting roles of condensin I and condensin II in mitotic chromosome formation". J. Cell Sci. 125 (Pt6): 1591–1604. doi:10.1242/jcs.097790. PMC 3336382. PMID 22344259.
  62. ^ Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994). "Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis". EMBO J. 13 (20): 4938–52. doi:10.1002/j.1460-2075.1994.tb06821.x. PMC 395434. PMID 7957061.
  63. ^ Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003). "Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes". Dev. Cell. 5 (2): 323–336. doi:10.1016/s1534-5807(03)00199-0. PMID 12919682.
  64. ^ a b c Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011). "Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis". Plant Cell. 23 (9): 3533–46. doi:10.1105/tpc.111.086314. PMC 3203421. PMID 21917552.
  65. ^ Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013). "Organization of the mitotic chromosome". Science. 342 (6161): 948–953. Bibcode:2013Sci...342..948N. doi:10.1126/science.1236083. PMC 4040465. PMID 24200812.
  66. ^ Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J (2017). "SMC complexes differentially compact mitotic chromosomes according to genomic context". Nat Cell Biol. 19 (9): 1071–80. doi:10.1038/ncb3594. PMC 5640152. PMID 28825700.
  67. ^ Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R (2017). "Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle". EMBO J. 36 (18): 2684–97. doi:10.15252/embj.201797342. PMC 5599795. PMID 28729434.
  68. ^ Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017). "Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast". Nat Genet. 49 (10): 1553–7. doi:10.1038/ng.3938. PMC 5621628. PMID 28825727.
  69. ^ Tanizawa H, Kim KD, Iwasaki O, Noma KI (2017). "Architectural alterations of the fission yeast genome during the cell cycle". Nat Struct Mol Biol. 24 (11): 965–976. doi:10.1038/nsmb.3482. PMC 5724045. PMID 28991264.
  70. ^ Gibcus, Johan H.; Samejima, Kumiko; Goloborodko, Anton; Samejima, Itaru; Naumova, Natalia; Nuebler, Johannes; Kanemaki, Masato T.; Xie, Linfeng; Paulson, James R.; Earnshaw, William C.; Mirny, Leonid A.; Dekker, Job (9 February 2018). "A pathway for mitotic chromosome formation". Science. 359 (6376): eaao6135. doi:10.1126/science.aao6135. PMC 5924687. PMID 29348367.
  71. ^ Walther, Nike; Hossain, M. Julius; Politi, Antonio Z.; Koch, Birgit; Kueblbeck, Moritz; Ødegård-Fougner, Øyvind; Lampe, Marko; Ellenberg, Jan (2 July 2018). "A quantitative map of human Condensins provides new insights into mitotic chromosome architecture". Journal of Cell Biology. 217 (7): 2309–28. doi:10.1083/jcb.201801048. PMC 6028534. PMID 29632028.
  72. ^ Yu HG, Koshland DE (2003). "Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages". J. Cell Biol. 163 (5): 937–947. doi:10.1083/jcb.200308027. PMC 2173617. PMID 14662740.
  73. ^ Hartl TA, Sweeney SJ, Knepler PJ, Bosco G (2008). "Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis". PLOS Genet. 4 (10): e1000228. doi:10.1371/journal.pgen.1000228. PMC 2562520. PMID 18927632.
  74. ^ Resnick TD, Dej KJ, Xiang Y, Hawley RS, Ahn C, Orr-Weaver TL (2009). "Mutations in the chromosomal passenger complex and the condensin complex differentially affect synaptonemal complex disassembly and metaphase I configuration in Drosophila female meiosis". Genetics. 181 (3): 875–887. doi:10.1534/genetics.108.097741. PMC 2651061. PMID 19104074.
  75. ^ Chan RC, Severson AF, Meyer BJ (2004). "Condensin restructures chromosomes in preparation for meiotic divisions". J. Cell Biol. 167 (4): 613–625. doi:10.1083/jcb.200408061. PMC 2172564. PMID 15557118.
  76. ^ Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K (2015). "Condensin confers the longitudinal rigidity of chromosomes". Nat Cell Biol. 17 (6): 771–81. doi:10.1038/ncb3167. PMC 5207317. PMID 25961503.
  77. ^ Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T (2006). "Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae". Mol Cell Biol. 26 (6): 2226–36. doi:10.1128/MCB.26.6.2226-2236.2006. PMC 1430289. PMID 16507999.
  78. ^ Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR (2008). "Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes". Genes Dev. 22 (16): 2204–14. doi:10.1101/gad.1675908. PMC 2518813. PMID 18708579.
  79. ^ Aono N, Sutani T, Tomonaga T, Mochida S, Yanagida M (2002). "Cnd2 has dual roles in mitotic condensation and interphase". Nature. 417 (6885): 197–202. Bibcode:2002Natur.417..197A. doi:10.1038/417197a. PMID 12000964. S2CID 4332524.
  80. ^ Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma K (2010). "Centromeric localization of dispersed Pol III genes in fission yeast". Mol. Biol. Cell. 21 (2): 254–265. doi:10.1091/mbc.e09-09-0790. PMC 2808234. PMID 19910488.
  81. ^ Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ (2015). "Condensin-driven remodelling of X chromosome topology during dosage compensation". Nature. 523 (7559): 210–244. Bibcode:2015Natur.523..240C. doi:10.1038/nature14450. PMC 4498965. PMID 26030525.
  82. ^ a b Hartl TA, Smith HF, Bosco G (2008). "Chromosome alignment and transvection are antagonized by condensin II". Science. 322 (5906): 1384–7. Bibcode:2008Sci...322.1384H. doi:10.1126/science.1164216. PMID 19039137. S2CID 5154197.
  83. ^ Bauer CR, Hartl TA, Bosco G (2012). "Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes". PLOS Genet. 8 (8): e1002873. doi:10.1371/journal.pgen.1002873. PMC 3431300. PMID 22956908.
  84. ^ Hassan A, Araguas Rodriguez P, Heidmann SK, Walmsley EL, Aughey GN, Southall TD (2020). "Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons". eLife. 9: e55159. doi:10.7554/eLife.55159. PMC 7170655. PMID 32255428.
  85. ^ Ono T, Yamashita D, Hirano T (2013). "Condensin II initiates sister chromatid resolution during S phase". J. Cell Biol. 200 (4): 429–441. doi:10.1083/jcb.201208008. PMC 3575537. PMID 23401001.
  86. ^ Paul MR, Markowitz TE, Hochwagen A, Ercan S (2018). "Condensin depletion causes genome decompaction without altering the level of global gene expression in Saccharomyces cerevisiae". Genetics. 210 (1): 331–344. doi:10.1534/genetics.118.301217. PMC 6116964. PMID 29970489.
  87. ^ Hocquet C, Robellet X, Modolo L, Sun XM, Burny C, Cuylen-Haering S, Toselli E, Clauder-Münster S, Steinmetz L, Haering CH, Marguerat S, Bernard P (2018). "Condensin controls cellular RNA levels through the accurate segregation of chromosomes insteadof directly regulating transcription". eLife. 7: e38517. doi:10.7554/eLife.38517. PMC 6173581. PMID 30230473.
  88. ^ a b Xu X, Nakazawa N, Yanagida M (2015). "Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast". PLoS One. 10 (3): e0119347. doi:10.1371/journal.pone.0119347. PMC 4357468. PMID 25764183.
  89. ^ Dekker B, Dekker J (2022). "Regulation of the mitotic chromosome folding machines". Biochem J. 479 (20): 2153–73. doi:10.1042/BCJ20210140. PMC 9704520. PMID 36268993.
  90. ^ a b Bazile F, St-Pierre J, D'Amours D (2010). "Three-step model for condensin activation during mitotic chromosome condensation". Cell Cycle. 9 (16): 3243–55. doi:10.4161/cc.9.16.12620. PMID 20703077.
  91. ^ Robellet X, Thattikota Y, Wang F, Wee TL, Pascariu M, Shankar S, Bonneil É, Brown CM, D'Amours D (2015). "A high-sensitivity phospho-switch triggered by Cdk1 governs chromosome morphogenesis during cell division". Genes Dev. 29 (4): 426–439. doi:10.1101/gad.253294.114. PMC 4335297. PMID 25691469.
  92. ^ Thadani R, Kamenz J, Heeger S, Muñoz S, Uhlmann F (2018). "Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex". Cell Rep. 23 (8): 2308–17. doi:10.1016/j.celrep.2018.04.082. PMC 5986713. PMID 29791843.
  93. ^ Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T (2022). "Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit". eLife. 11: e84694. doi:10.7554/eLife.84694. PMC 9797191. PMID 36511239.
  94. ^ Lipp JJ, Hirota T, Poser I, Peters JM (2007). "Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes". J Cell Sci. 120 (Pt 7): 1245–55. doi:10.1242/jcs.03425. PMID 17356064.
  95. ^ Nakazawa N, Mehrotra R, Ebe M, Yanagida M (2011). "Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2". J Cell Sci. 124 (Pt 11): 1795–1807. doi:10.1242/jcs.078733. PMID 21540296.
  96. ^ Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F (2006). "Negative regulation of condensin I by CK2-mediated phosphorylation". EMBO J. 25 (22): 5339–48. doi:10.1038/sj.emboj.7601394. PMC 1636611. PMID 17066080.
  97. ^ Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, Obuse C, Hirota T (2011). "The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II". Genes Dev. 25 (8): 863–874. doi:10.1101/gad.2016411. PMC 3078710. PMID 21498573.
  98. ^ Bakhrebah M, Zhang T, Mann JR, Kalitsis P, Hudson DF (2015). "Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation". J Biol Chem. 290 (10): 6156–67. doi:10.1074/jbc.M114.627109. PMC 4358255. PMID 25605712.
  99. ^ Kim JH, Shim J, Ji MJ, Jung Y, Bong SM, Jang YJ, Yoon EK, Lee SJ, Kim KG, Kim YH, Lee C, Lee BI, Kim KT (2014). "The condensin component NCAPG2 regulates microtubule-kinetochore attachment through recruitment of Polo-like kinase 1 to kinetochores". Nat Commun. 5: 4588. doi:10.1038/ncomms5588. PMID 25109385.
  100. ^ Kagami Y, Nihira K, Wada S, Ono M, Honda M, Yoshida K (2014). "Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis". J. Cell Biol. 205 (6): 781–790. doi:10.1083/jcb.201308172. PMC 4068140. PMID 24934155.
  101. ^ Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, Loregger T, Marchler-Bauer A, Tanaka K, Peters JM, Ogris E (2003). "Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A". Curr Biol. 13 (23): 2058–64. doi:10.1016/j.cub.2003.10.032. PMID 14653995.
  102. ^ Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE, Bilder D, Bosco G, Rogers GC (2013). "SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2". J. Cell Biol. 201 (1): 49–63. doi:10.1083/jcb.201207183. PMC 3613687. PMID 23530065.
  103. ^ Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011). "MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II". J. Cell Biol. 194 (6): 841–854. doi:10.1083/jcb.201106141. PMC 3207293. PMID 21911480.
  104. ^ Trimborn M, Schindler D, Neitzel H, Hirano T (2006). "Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II". Cell Cycle. 5 (3): 322–6. doi:10.4161/cc.5.3.2412. PMID 16434882.
  105. ^ Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, Fetit AE, Keith C, Bicknell LS, Fluteau A, Gautier P, Hall EA, Joss S, Soares G, Silva J, Bober MB, Duker A, Wise CA, Quigley AJ, Phadke SR, The Deciphering Developmental Disorders Study, Wood AJ, Vagnarelli P, Jackson AP (2016). "Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis". Genes Dev. 30 (19): 2158–72. doi:10.1101/gad.286351.116. PMC 5088565. PMID 27737959.
  106. ^ Gosling KM, Makaroff LE, Theodoratos A, Kim YH, Whittle B, Rui L, Wu H, Hong NA, Kennedy GC, Fritz JA, Yates AL, Goodnow CC, Fahrer AM (2007). "A mutation in a chromosome condensin II subunit, kleisin beta, specifically disrupts T cell development". Proc. Natl. Acad. Sci. USA. 104 (30): 12445–50. Bibcode:2007PNAS..10412445G. doi:10.1073/pnas.0704870104. PMC 1941488. PMID 17640884.
  107. ^ Woodward J, Taylor GC, Soares DC, Boyle S, Sie D, Read D, Chathoth K, Vukovic M, Tarrats N, Jamieson D, Campbell KJ, Blyth K, Acosta JC, Ylstra B, Arends MJ, Kranc KR, Jackson AP, Bickmore WA, Wood AJ (2016). "Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability". Genes Dev. 30 (19): 2173–86. doi:10.1101/gad.284562.116. PMC 5088566. PMID 27737961.
  108. ^ Hoencamp C, Dudchenko O, Elbatsh AM, Brahmachari S, Raaijmakers JA, van Schaik T, Sedeño Cacciatore Á, Contessoto VG, van Heesbeen RG, van den Broek B, Mhaskar AN, Teunissen H, St Hilaire BG, Weisz D, Omer AD, Pham M, Colaric Z, Yang Z, Rao SS, Mitra N, Lui C, Yao W, Khan R, Moroz LL, Kohn A, St Leger J, Mena A, Holcroft K, Gambetta MC, Lim F, Farley E, Stein N, Haddad A, Chauss D, Mutlu AS, Wang MC, Young ND, Hildebrandt E, Cheng HH, Knight CJ, Burnham TL, Hovel KA, Beel AJ, Mattei PJ, Kornberg RD, Warren WC, Cary G, Gómez-Skarmeta JL, Hinman V, Lindblad-Toh K, Di Palma F, Maeshima K, Multani AS, Pathak S, Nel-Themaat L, Behringer RR, Kaur P, Medema RH, van Steensel B, de Wit E, Onuchic JN, Di Pierro M, Lieberman Aiden E, Rowland BD (2021). "3D genomics across the tree of life reveals condensin II as a determinant of architecture type". Science. 372 (6545): 984–9. doi:10.1126/science.abe2218. PMC 8172041. PMID 34045355.
edit