In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions. Chaotic maps often occur in the study of dynamical systems.
Chaotic maps and iterated functions often generate fractals. Some fractals are studied as objects themselves, as sets rather than in terms of the maps that generate them. This is often because there are several different iterative procedures that generate the same fractal. See also Universality (dynamical systems).
List of chaotic maps
editList of fractals
edit- Cantor set
- de Rham curve
- Gravity set, or Mitchell-Green gravity set
- Julia set - derived from complex quadratic map
- Koch snowflake - special case of de Rham curve
- Lyapunov fractal
- Mandelbrot set - derived from complex quadratic map
- Menger sponge
- Newton fractal
- Nova fractal - derived from Newton fractal
- Quaternionic fractal - three dimensional complex quadratic map
- Sierpinski carpet
- Sierpinski triangle
References
edit- ^ Chaos from Euler Solution of ODEs
- ^ On the dynamics of a new simple 2-D rational discrete mapping
- ^ http://www.yangsky.us/ijcc/pdf/ijcc83/IJCC823.pdf[permanent dead link ]
- ^ The Aizawa attractor
- ^ Local Stability and Hopf Bifurcation Analysis of the Arneodo’s System
- ^ Basin of attraction Archived 2014-07-01 at the Wayback Machine
- ^ Zahmoul, Rim; Ejbali, Ridha; Zaied, Mourad (2017). "Image encryption based on new Beta chaotic maps". Optics and Lasers in Engineering. 96: 39–49. Bibcode:2017OptLE..96...39Z. doi:10.1016/j.optlaseng.2017.04.009.
- ^ 1981 The Burke & Shaw system
- ^ A new chaotic attractor coined
- ^ A new chaotic attractor coined
- ^ A new chaotic attractor coined
- ^ http://www.scholarpedia.org/article/Chua_circuit Chua Circuit
- ^ Clifford Attractors
- ^ Peter de Jong Attractors
- ^ A discrete population model of delayed regulation
- ^ Chaos from Euler Solution of ODEs
- ^ Chaos from Euler Solution of ODEs
- ^ Irregular Attractors
- ^ A New Finance Chaotic Attractor
- ^ Hyperchaos Archived 2015-12-22 at the Wayback Machine
- ^ Visions of Chaos 2D Strange Attractor Tutorial
- ^ A new chaotic system and beyond: The generalized Lorenz-like system
- ^ Gingerbreadman map
- ^ Mira Fractals
- ^ Half-inverted tearing
- ^ Halvorsen: A tribute to Dr. Edward Norton Lorenz
- ^ Peter de Jong Attractors
- ^ Hopalong orbit fractal
- ^ Irregular Attractors
- ^ Global chaos synchronization of hyperchaotic chen system by sliding model control
- ^ Hyper-Lu system
- ^ The first hyperchaotic system
- ^ Hyperchaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Attractors
- ^ Knot fractal map Archived 2015-12-22 at the Wayback Machine
- ^ Lefranc, Marc; Letellier, Christophe; Gilmore, Robert (2008). "Chaos topology". Scholarpedia. 3 (7): 4592. Bibcode:2008SchpJ...3.4592G. doi:10.4249/scholarpedia.4592.
- ^ Lambić, Dragan (2015). "A new discrete chaotic map based on the composition of permutations". Chaos, Solitons & Fractals. 78: 245–248. Bibcode:2015CSF....78..245L. doi:10.1016/j.chaos.2015.08.001.
- ^ A 3D symmetrical toroidal chaos
- ^ Lozi maps
- ^ Moore-Spiegel Attractor
- ^ A new chaotic system and beyond: The generalized lorenz-like system
- ^ A New Chaotic Jerk Circuit
- ^ Chaos Control and Hybrid Projective Synchronization of a Novel Chaotic System
- ^ Pickover
- ^ Polynomial Type-A
- ^ Polynomial Type-B
- ^ Polynomial Type-C
- ^ Quadrup Two Orbit Fractal
- ^ Rikitake chaotic attractor Archived 2010-06-20 at the Wayback Machine
- ^ Description of strange attractors using invariants of phase-plane
- ^ Skarya Archived 2015-12-22 at the Wayback Machine
- ^ Van der Pol Oscillator Equations
- ^ Shaw-Pol chaotic oscillator Archived 2015-12-22 at the Wayback Machine
- ^ The Shimiziu-Morioka System
- ^ Sprott B chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ Chaos Blog - Sprott B system Archived 2015-12-22 at the Wayback Machine
- ^ Sprott C chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ Chaos Blog - Sprott C system Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz A chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz A chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz B chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz B chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz C chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz C chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz D chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz D chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz E chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz E chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz F chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz F chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz G chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz G chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz H chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz H chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz I chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz I chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz J chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz J chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz K chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz K chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz L chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz L chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz M chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz M chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz N chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz N chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz O chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz O chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz P chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz P chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz Q chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz Q chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz R chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz R chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - Sprott-Linz S chaotic attractor Archived 2007-02-27 at the Wayback Machine
- ^ A new chaotic system and beyond: The generalized Lorenz-like System
- ^ Chaos Blog - Sprott-Linz S chaotic attractor Archived 2015-12-22 at the Wayback Machine
- ^ Strizhak-Kawczynski chaotic oscillator[permanent dead link ]
- ^ Chaos Blog - Strizhak-Kawczynski chaotic oscillator Archived 2015-12-22 at the Wayback Machine
- ^ Sprott's Gateway - A symmetric chaotic flow
- ^ Okulov, A. Yu (2020). "Structured light entities, chaos and nonlocal maps". Chaos, Solitons & Fractals. 133: 109638. arXiv:1901.09274. Bibcode:2020CSF...13309638O. doi:10.1016/j.chaos.2020.109638. S2CID 247759987.
{{cite journal}}
: Check|url=
value (help)[permanent dead link ] - ^ Okulov, A. Yu.; Oraevsky, A. N. (1986). "Space–temporal behavior of a light pulse propagating in a nonlinear nondispersive medium". Journal of the Optical Society of America B. 3 (5): 741. Bibcode:1986JOSAB...3..741O. doi:10.1364/JOSAB.3.000741. S2CID 124347430.
- ^ Okulov, A Yu; Oraevskiĭ, A. N. (1984). "Regular and stochastic self-modulation of radiation in a ring laser with a nonlinear element". Soviet Journal of Quantum Electronics. 14 (9): 1235–1237. doi:10.1070/QE1984v014n09ABEH006171.
- ^ Okulov, Alexey Yurievich (2020). "Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings". Computer Research and Modeling. 12 (5): 979–992. arXiv:1911.10694. doi:10.20537/2076-7633-2020-12-5-979-992. S2CID 211133329.
{{cite journal}}
: Check|url=
value (help)[permanent dead link ] - ^ http://sprott.physics.wisc.edu/chaostsa/ Sprott's Gateway - Chaos and Time-Series Analysis
- ^ Oscillator of Ueda
- ^ Internal fluctuations in a model of chemical chaos
- ^ "Main Page - Weigel's Research and Teaching Page". aurora.gmu.edu. Archived from the original on 10 April 2011. Retrieved 17 January 2022.
- ^ Synchronization of Chaotic Fractional-Order WINDMI Systems via Linear State Error Feedback Control
- ^ Vaidyanathan, S.; Volos, Ch. K.; Rajagopal, K.; Kyprianidis, I. M.; Stouboulos, I. N. (2015). "Adaptive Backstepping Controller Design for the Anti-Synchronization of Identical WINDMI Chaotic Systems with Unknown Parameters and its SPICE Implementation" (PDF). Journal of Engineering Science and Technology Review. 8 (2): 74–82. doi:10.25103/jestr.082.11.
- ^ Chen, Guanrong; Kudryashova, Elena V.; Kuznetsov, Nikolay V.; Leonov, Gennady A. (2016). "Dynamics of the Zeraoulia–Sprott Map Revisited". International Journal of Bifurcation and Chaos. 26 (7): 1650126–21. arXiv:1602.08632. Bibcode:2016IJBC...2650126C. doi:10.1142/S0218127416501261. S2CID 11406449.