A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986,[1] with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of April 9, 1986 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.0822 |
Magnitude | 0.8236 |
Maximum eclipse | |
Coordinates | 61°12′S 161°24′E / 61.2°S 161.4°E |
Times (UTC) | |
Greatest eclipse | 6:21:22 |
References | |
Saros | 119 (64 of 71) |
Catalog # (SE5000) | 9478 |
A partial eclipse was visible for parts of Antarctica, Australia, Indonesia, and New Zealand.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1986 April 09 at 04:10:36.4 UTC |
Equatorial Conjunction | 1986 April 09 at 05:14:50.1 UTC |
Ecliptic Conjunction | 1986 April 09 at 06:09:02.6 UTC |
Greatest Eclipse | 1986 April 09 at 06:21:22.4 UTC |
Last Penumbral External Contact | 1986 April 09 at 08:32:39.0 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.82362 |
Eclipse Obscuration | 0.75723 |
Gamma | −1.08215 |
Sun Right Ascension | 01h10m32.0s |
Sun Declination | +07°29'00.7" |
Sun Semi-Diameter | 15'58.1" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 01h12m23.9s |
Moon Declination | +06°36'30.3" |
Moon Semi-Diameter | 14'59.5" |
Moon Equatorial Horizontal Parallax | 0°55'01.4" |
ΔT | 55.0 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
April 9 Ascending node (new moon) |
April 24 Descending node (full moon) |
---|---|
Partial solar eclipse Solar Saros 119 |
Total lunar eclipse Lunar Saros 131 |
Related eclipses
editEclipses in 1986
edit- A partial solar eclipse on April 9.
- A total lunar eclipse on April 24.
- A hybrid solar eclipse on October 3.
- A total lunar eclipse on October 17.
Metonic
edit- Preceded by: Solar eclipse of June 21, 1982
- Followed by: Solar eclipse of January 26, 1990
Tzolkinex
edit- Preceded by: Solar eclipse of February 26, 1979
- Followed by: Solar eclipse of May 21, 1993
Half-Saros
edit- Preceded by: Lunar eclipse of April 4, 1977
- Followed by: Lunar eclipse of April 15, 1995
Tritos
edit- Preceded by: Solar eclipse of May 11, 1975
- Followed by: Solar eclipse of March 9, 1997
Solar Saros 119
edit- Preceded by: Solar eclipse of March 28, 1968
- Followed by: Solar eclipse of April 19, 2004
Inex
edit- Preceded by: Solar eclipse of April 30, 1957
- Followed by: Solar eclipse of March 20, 2015
Triad
edit- Preceded by: Solar eclipse of June 8, 1899
- Followed by: Solar eclipse of February 7, 2073
Solar eclipses of 1986–1989
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
Solar eclipse series sets from 1986 to 1989 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | April 9, 1986 Partial |
−1.0822 | 124 | October 3, 1986 Hybrid |
0.9931 | |
129 | March 29, 1987 Hybrid |
−0.3053 | 134 | September 23, 1987 Annular |
0.2787 | |
139 | March 18, 1988 Total |
0.4188 | 144 | September 11, 1988 Annular |
−0.4681 | |
149 | March 7, 1989 Partial |
1.0981 | 154 | August 31, 1989 Partial |
−1.1928 |
Saros 119
editThis eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 54–71 occur between 1801 and 2112: | ||
---|---|---|
54 | 55 | 56 |
December 21, 1805 |
January 1, 1824 |
January 11, 1842 |
57 | 58 | 59 |
January 23, 1860 |
February 2, 1878 |
February 13, 1896 |
60 | 61 | 62 |
February 25, 1914 |
March 7, 1932 |
March 18, 1950 |
63 | 64 | 65 |
March 28, 1968 |
April 9, 1986 |
April 19, 2004 |
66 | 67 | 68 |
April 30, 2022 |
May 11, 2040 |
May 22, 2058 |
69 | 70 | 71 |
June 1, 2076 |
June 13, 2094 |
June 24, 2112 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between June 21, 1982 and June 21, 2058 | ||||
---|---|---|---|---|
June 21 | April 8–9 | January 26 | November 13–14 | September 1–2 |
117 | 119 | 121 | 123 | 125 |
June 21, 1982 |
April 9, 1986 |
January 26, 1990 |
November 13, 1993 |
September 2, 1997 |
127 | 129 | 131 | 133 | 135 |
June 21, 2001 |
April 8, 2005 |
January 26, 2009 |
November 13, 2012 |
September 1, 2016 |
137 | 139 | 141 | 143 | 145 |
June 21, 2020 |
April 8, 2024 |
January 26, 2028 |
November 14, 2031 |
September 2, 2035 |
147 | 149 | 151 | 153 | 155 |
June 21, 2039 |
April 9, 2043 |
January 26, 2047 |
November 14, 2050 |
September 2, 2054 |
157 | ||||
June 21, 2058 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1866 and 2200 | ||||
---|---|---|---|---|
March 16, 1866 (Saros 108) |
December 13, 1898 (Saros 111) |
|||
September 12, 1931 (Saros 114) |
August 12, 1942 (Saros 115) |
July 11, 1953 (Saros 116) |
June 10, 1964 (Saros 117) | |
May 11, 1975 (Saros 118) |
April 9, 1986 (Saros 119) |
March 9, 1997 (Saros 120) |
February 7, 2008 (Saros 121) |
January 6, 2019 (Saros 122) |
December 5, 2029 (Saros 123) |
November 4, 2040 (Saros 124) |
October 4, 2051 (Saros 125) |
September 3, 2062 (Saros 126) |
August 3, 2073 (Saros 127) |
July 3, 2084 (Saros 128) |
June 2, 2095 (Saros 129) |
May 3, 2106 (Saros 130) |
April 2, 2117 (Saros 131) |
March 1, 2128 (Saros 132) |
January 30, 2139 (Saros 133) |
December 30, 2149 (Saros 134) |
November 27, 2160 (Saros 135) |
October 29, 2171 (Saros 136) |
September 27, 2182 (Saros 137) |
August 26, 2193 (Saros 138) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
August 7, 1812 (Saros 113) |
July 18, 1841 (Saros 114) |
June 28, 1870 (Saros 115) |
June 8, 1899 (Saros 116) |
May 19, 1928 (Saros 117) |
April 30, 1957 (Saros 118) |
April 9, 1986 (Saros 119) |
March 20, 2015 (Saros 120) |
February 28, 2044 (Saros 121) |
February 7, 2073 (Saros 122) |
January 19, 2102 (Saros 123) |
December 30, 2130 (Saros 124) |
December 9, 2159 (Saros 125) |
November 18, 2188 (Saros 126) |
References
edit- ^ "April 9, 1986 Partial Solar Eclipse". timeanddate. Retrieved 9 August 2024.
- ^ "Partial Solar Eclipse of 1986 Apr 09". EclipseWise.com. Retrieved 9 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.
External links
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC