Solar eclipse of November 4, 2040

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040,[1] with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of November 4, 2040
Map
Type of eclipse
NaturePartial
Gamma1.0993
Magnitude0.8074
Maximum eclipse
Coordinates62°12′N 53°24′W / 62.2°N 53.4°W / 62.2; -53.4
Times (UTC)
Greatest eclipse19:09:02
References
Saros124 (56 of 73)
Catalog # (SE5000)9598

A partial eclipse will be visible for parts of North America, Central America, the Caribbean, and northern South America.

Images

edit

 
Animated path

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

November 4, 2040 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2040 November 04 at 17:09:37.4 UTC
Equatorial Conjunction 2040 November 04 at 18:17:26.3 UTC
Ecliptic Conjunction 2040 November 04 at 18:57:12.1 UTC
Greatest Eclipse 2040 November 04 at 19:09:02.0 UTC
Last Penumbral External Contact 2040 November 04 at 21:08:42.2 UTC
November 4, 2040 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.80742
Eclipse Obscuration 0.75126
Gamma 1.09928
Sun Right Ascension 14h42m06.9s
Sun Declination -15°43'53.8"
Sun Semi-Diameter 16'07.7"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 14h43m50.8s
Moon Declination -14°45'19.8"
Moon Semi-Diameter 15'49.8"
Moon Equatorial Horizontal Parallax 0°58'05.7"
ΔT 79.0 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November 2040
November 4
Descending node (new moon)
November 18
Ascending node (full moon)
   
Partial solar eclipse
Solar Saros 124
Total lunar eclipse
Lunar Saros 136
edit

Eclipses in 2040

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 124

edit

Inex

edit

Triad

edit

Solar eclipses of 2040–2043

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

Solar eclipse series sets from 2040 to 2043
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 May 11, 2040
 
Partial
−1.2529 124 November 4, 2040
 
Partial
1.0993
129 April 30, 2041
 
Total
−0.4492 134 October 25, 2041
 
Annular
0.4133
139 April 20, 2042
 
Total
0.2956 144 October 14, 2042
 
Annular
−0.303
149 April 9, 2043
 
Total (non-central)
1.0031 154 October 3, 2043
 
Annular (non-central)
1.0102

Saros 124

edit

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 43–64 occur between 1801 and 2200:
43 44 45
 
June 16, 1806
 
June 26, 1824
 
July 8, 1842
46 47 48
 
July 18, 1860
 
July 29, 1878
 
August 9, 1896
49 50 51
 
August 21, 1914
 
August 31, 1932
 
September 12, 1950
52 53 54
 
September 22, 1968
 
October 3, 1986
 
October 14, 2004
55 56 57
 
October 25, 2022
 
November 4, 2040
 
November 16, 2058
58 59 60
 
November 26, 2076
 
December 7, 2094
 
December 19, 2112
61 62 63
 
December 30, 2130
 
January 9, 2149
 
January 21, 2167
64
 
January 31, 2185

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12 March 30–31 January 16 November 4–5 August 23–24
118 120 122 124 126
 
June 12, 2029
 
March 30, 2033
 
January 16, 2037
 
November 4, 2040
 
August 23, 2044
128 130 132 134 136
 
June 11, 2048
 
March 30, 2052
 
January 16, 2056
 
November 5, 2059
 
August 24, 2063
138 140 142 144 146
 
June 11, 2067
 
March 31, 2071
 
January 16, 2075
 
November 4, 2078
 
August 24, 2082
148 150 152 154 156
 
June 11, 2086
 
March 31, 2090
 
January 16, 2094
 
November 4, 2097
 
August 24, 2101
158 160 162 164
 
June 12, 2105
 
November 4, 2116

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1866 and 2200
 
March 16, 1866
(Saros 108)
 
December 13, 1898
(Saros 111)
 
September 12, 1931
(Saros 114)
 
August 12, 1942
(Saros 115)
 
July 11, 1953
(Saros 116)
 
June 10, 1964
(Saros 117)
 
May 11, 1975
(Saros 118)
 
April 9, 1986
(Saros 119)
 
March 9, 1997
(Saros 120)
 
February 7, 2008
(Saros 121)
 
January 6, 2019
(Saros 122)
 
December 5, 2029
(Saros 123)
 
November 4, 2040
(Saros 124)
 
October 4, 2051
(Saros 125)
 
September 3, 2062
(Saros 126)
 
August 3, 2073
(Saros 127)
 
July 3, 2084
(Saros 128)
 
June 2, 2095
(Saros 129)
 
May 3, 2106
(Saros 130)
 
April 2, 2117
(Saros 131)
 
March 1, 2128
(Saros 132)
 
January 30, 2139
(Saros 133)
 
December 30, 2149
(Saros 134)
 
November 27, 2160
(Saros 135)
 
October 29, 2171
(Saros 136)
 
September 27, 2182
(Saros 137)
 
August 26, 2193
(Saros 138)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 14, 1809
(Saros 116)
 
March 25, 1838
(Saros 117)
 
March 6, 1867
(Saros 118)
 
February 13, 1896
(Saros 119)
 
January 24, 1925
(Saros 120)
 
January 5, 1954
(Saros 121)
 
December 15, 1982
(Saros 122)
 
November 25, 2011
(Saros 123)
 
November 4, 2040
(Saros 124)
 
October 15, 2069
(Saros 125)
 
September 25, 2098
(Saros 126)
 
September 6, 2127
(Saros 127)
 
August 16, 2156
(Saros 128)
 
July 26, 2185
(Saros 129)

References

edit
  1. ^ "November 4, 2040 Partial Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. ^ "Partial Solar Eclipse of 2040 Nov 04". EclipseWise.com. Retrieved 14 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.
edit