A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, January 14, 2029,[1] with a magnitude of 0.8714. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of January 14, 2029 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.0553 |
Magnitude | 0.8714 |
Maximum eclipse | |
Coordinates | 63°42′N 114°12′W / 63.7°N 114.2°W |
Times (UTC) | |
Greatest eclipse | 17:13:48 |
References | |
Saros | 151 (15 of 72) |
Catalog # (SE5000) | 9571 |
This will be the first of four partial solar eclipses in 2029, with the others occurring on June 12, July 11, and December 5.
A partial eclipse will be visible for parts of North America and Central America.
Images
editEclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2029 January 14 at 15:03:08.9 UTC |
Greatest Eclipse | 2029 January 14 at 17:13:47.5 UTC |
Ecliptic Conjunction | 2029 January 14 at 17:25:40.8 UTC |
Equatorial Conjunction | 2029 January 14 at 17:48:06.7 UTC |
Last Penumbral External Contact | 2029 January 14 at 19:24:17.6 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.87140 |
Eclipse Obscuration | 0.81600 |
Gamma | 1.05532 |
Sun Right Ascension | 19h47m03.1s |
Sun Declination | -21°09'31.8" |
Sun Semi-Diameter | 16'15.6" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 19h45m53.5s |
Moon Declination | -20°12'32.3" |
Moon Semi-Diameter | 15'20.6" |
Moon Equatorial Horizontal Parallax | 0°56'18.7" |
ΔT | 73.4 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
December 31 Descending node (full moon) |
January 14 Ascending node (new moon) |
---|---|
Total lunar eclipse Lunar Saros 125 |
Partial solar eclipse Solar Saros 151 |
Related eclipses
editEclipses in 2029
edit- A partial solar eclipse on January 14.
- A partial solar eclipse on June 12.
- A total lunar eclipse on June 26.
- A partial solar eclipse on July 11.
- A partial solar eclipse on December 5.
- A total lunar eclipse on December 20.
Metonic
edit- Preceded by: Solar eclipse of March 29, 2025
- Followed by: Solar eclipse of November 3, 2032
Tzolkinex
edit- Preceded by: Solar eclipse of December 4, 2021
- Followed by: Solar eclipse of February 27, 2036
Half-Saros
edit- Preceded by: Lunar eclipse of January 10, 2020
- Followed by: Lunar eclipse of January 21, 2038
Tritos
edit- Preceded by: Solar eclipse of February 15, 2018
- Followed by: Solar eclipse of December 15, 2039
Solar Saros 151
edit- Preceded by: Solar eclipse of January 4, 2011
- Followed by: Solar eclipse of January 26, 2047
Inex
edit- Preceded by: Solar eclipse of February 5, 2000
- Followed by: Solar eclipse of December 26, 2057
Triad
edit- Preceded by: Solar eclipse of March 16, 1942
- Followed by: Solar eclipse of November 16, 2115
Solar eclipses of 2026–2029
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipses on June 12, 2029 and December 5, 2029 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2026 to 2029 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 | February 17, 2026 Annular |
−0.97427 | 126 | August 12, 2026 Total |
0.89774 | |
131 | February 6, 2027 Annular |
−0.29515 | 136 | August 2, 2027 Total |
0.14209 | |
141 | January 26, 2028 Annular |
0.39014 | 146 | July 22, 2028 Total |
−0.60557 | |
151 | January 14, 2029 Partial |
1.05532 | 156 | July 11, 2029 Partial |
−1.41908 |
Saros 151
editThis eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 3–24 occur between 1801 and 2200: | ||
---|---|---|
3 | 4 | 5 |
September 5, 1812 |
September 17, 1830 |
September 27, 1848 |
6 | 7 | 8 |
October 8, 1866 |
October 19, 1884 |
October 31, 1902 |
9 | 10 | 11 |
November 10, 1920 |
November 21, 1938 |
December 2, 1956 |
12 | 13 | 14 |
December 13, 1974 |
December 24, 1992 |
January 4, 2011 |
15 | 16 | 17 |
January 14, 2029 |
January 26, 2047 |
February 5, 2065 |
18 | 19 | 20 |
February 16, 2083 |
February 28, 2101 |
March 11, 2119 |
21 | 22 | 23 |
March 21, 2137 |
April 2, 2155 |
April 12, 2173 |
24 | ||
April 23, 2191 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
20 eclipse events between June 10, 1964 and August 21, 2036 | ||||
---|---|---|---|---|
June 10–11 | March 28–29 | January 14–16 | November 3 | August 21–22 |
117 | 119 | 121 | 123 | 125 |
June 10, 1964 |
March 28, 1968 |
January 16, 1972 |
November 3, 1975 |
August 22, 1979 |
127 | 129 | 131 | 133 | 135 |
June 11, 1983 |
March 29, 1987 |
January 15, 1991 |
November 3, 1994 |
August 22, 1998 |
137 | 139 | 141 | 143 | 145 |
June 10, 2002 |
March 29, 2006 |
January 15, 2010 |
November 3, 2013 |
August 21, 2017 |
147 | 149 | 151 | 153 | 155 |
June 10, 2021 |
March 29, 2025 |
January 14, 2029 |
November 3, 2032 |
August 21, 2036 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.
Series members between 1801 and 2105 | ||||
---|---|---|---|---|
September 28, 1810 (Saros 131) |
August 27, 1821 (Saros 132) |
July 27, 1832 (Saros 133) |
June 27, 1843 (Saros 134) |
May 26, 1854 (Saros 135) |
April 25, 1865 (Saros 136) |
March 25, 1876 (Saros 137) |
February 22, 1887 (Saros 138) |
January 22, 1898 (Saros 139) |
December 23, 1908 (Saros 140) |
November 22, 1919 (Saros 141) |
October 21, 1930 (Saros 142) |
September 21, 1941 (Saros 143) |
August 20, 1952 (Saros 144) |
July 20, 1963 (Saros 145) |
June 20, 1974 (Saros 146) |
May 19, 1985 (Saros 147) |
April 17, 1996 (Saros 148) |
March 19, 2007 (Saros 149) |
February 15, 2018 (Saros 150) |
January 14, 2029 (Saros 151) |
December 15, 2039 (Saros 152) |
November 14, 2050 (Saros 153) |
October 13, 2061 (Saros 154) |
September 12, 2072 (Saros 155) |
August 13, 2083 (Saros 156) |
July 12, 2094 (Saros 157) |
June 12, 2105 (Saros 158) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 5, 1826 (Saros 144) |
May 16, 1855 (Saros 145) |
April 25, 1884 (Saros 146) |
April 6, 1913 (Saros 147) |
March 16, 1942 (Saros 148) |
February 25, 1971 (Saros 149) |
February 5, 2000 (Saros 150) |
January 14, 2029 (Saros 151) |
December 26, 2057 (Saros 152) |
December 6, 2086 (Saros 153) |
November 16, 2115 (Saros 154) |
October 26, 2144 (Saros 155) |
October 7, 2173 (Saros 156) |
References
edit- ^ "January 14, 2029 Partial Solar Eclipse". timeanddate. Retrieved 13 August 2024.
- ^ "Partial Solar Eclipse of 2029 Jan 14". EclipseWise.com. Retrieved 13 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.
External links
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC