Solar eclipse of January 14, 2029

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, January 14, 2029,[1] with a magnitude of 0.8714. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of January 14, 2029
Map
Type of eclipse
NaturePartial
Gamma1.0553
Magnitude0.8714
Maximum eclipse
Coordinates63°42′N 114°12′W / 63.7°N 114.2°W / 63.7; -114.2
Times (UTC)
Greatest eclipse17:13:48
References
Saros151 (15 of 72)
Catalog # (SE5000)9571

This will be the first of four partial solar eclipses in 2029, with the others occurring on June 12, July 11, and December 5.

A partial eclipse will be visible for parts of North America and Central America.

Images

edit

 
Animated path

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

January 14, 2029 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2029 January 14 at 15:03:08.9 UTC
Greatest Eclipse 2029 January 14 at 17:13:47.5 UTC
Ecliptic Conjunction 2029 January 14 at 17:25:40.8 UTC
Equatorial Conjunction 2029 January 14 at 17:48:06.7 UTC
Last Penumbral External Contact 2029 January 14 at 19:24:17.6 UTC
January 14, 2029 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.87140
Eclipse Obscuration 0.81600
Gamma 1.05532
Sun Right Ascension 19h47m03.1s
Sun Declination -21°09'31.8"
Sun Semi-Diameter 16'15.6"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 19h45m53.5s
Moon Declination -20°12'32.3"
Moon Semi-Diameter 15'20.6"
Moon Equatorial Horizontal Parallax 0°56'18.7"
ΔT 73.4 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 2028–January 2029
December 31
Descending node (full moon)
January 14
Ascending node (new moon)
   
Total lunar eclipse
Lunar Saros 125
Partial solar eclipse
Solar Saros 151
edit

Eclipses in 2029

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 151

edit

Inex

edit

Triad

edit

Solar eclipses of 2026–2029

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on June 12, 2029 and December 5, 2029 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2026 to 2029
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 February 17, 2026
 
Annular
−0.97427 126 August 12, 2026
 
Total
0.89774
131 February 6, 2027
 
Annular
−0.29515 136 August 2, 2027
 
Total
0.14209
141 January 26, 2028
 
Annular
0.39014 146 July 22, 2028
 
Total
−0.60557
151 January 14, 2029
 
Partial
1.05532 156 July 11, 2029
 
Partial
−1.41908

Saros 151

edit

This eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]

Series members 3–24 occur between 1801 and 2200:
3 4 5
 
September 5, 1812
 
September 17, 1830
 
September 27, 1848
6 7 8
 
October 8, 1866
 
October 19, 1884
 
October 31, 1902
9 10 11
 
November 10, 1920
 
November 21, 1938
 
December 2, 1956
12 13 14
 
December 13, 1974
 
December 24, 1992
 
January 4, 2011
15 16 17
 
January 14, 2029
 
January 26, 2047
 
February 5, 2065
18 19 20
 
February 16, 2083
 
February 28, 2101
 
March 11, 2119
21 22 23
 
March 21, 2137
 
April 2, 2155
 
April 12, 2173
24
 
April 23, 2191

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

20 eclipse events between June 10, 1964 and August 21, 2036
June 10–11 March 28–29 January 14–16 November 3 August 21–22
117 119 121 123 125
 
June 10, 1964
 
March 28, 1968
 
January 16, 1972
 
November 3, 1975
 
August 22, 1979
127 129 131 133 135
 
June 11, 1983
 
March 29, 1987
 
January 15, 1991
 
November 3, 1994
 
August 22, 1998
137 139 141 143 145
 
June 10, 2002
 
March 29, 2006
 
January 15, 2010
 
November 3, 2013
 
August 21, 2017
147 149 151 153 155
 
June 10, 2021
 
March 29, 2025
 
January 14, 2029
 
November 3, 2032
 
August 21, 2036

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105
 
September 28, 1810
(Saros 131)
 
August 27, 1821
(Saros 132)
 
July 27, 1832
(Saros 133)
 
June 27, 1843
(Saros 134)
 
May 26, 1854
(Saros 135)
 
April 25, 1865
(Saros 136)
 
March 25, 1876
(Saros 137)
 
February 22, 1887
(Saros 138)
 
January 22, 1898
(Saros 139)
 
December 23, 1908
(Saros 140)
 
November 22, 1919
(Saros 141)
 
October 21, 1930
(Saros 142)
 
September 21, 1941
(Saros 143)
 
August 20, 1952
(Saros 144)
 
July 20, 1963
(Saros 145)
 
June 20, 1974
(Saros 146)
 
May 19, 1985
(Saros 147)
 
April 17, 1996
(Saros 148)
 
March 19, 2007
(Saros 149)
 
February 15, 2018
(Saros 150)
 
January 14, 2029
(Saros 151)
 
December 15, 2039
(Saros 152)
 
November 14, 2050
(Saros 153)
 
October 13, 2061
(Saros 154)
 
September 12, 2072
(Saros 155)
 
August 13, 2083
(Saros 156)
 
July 12, 2094
(Saros 157)
 
June 12, 2105
(Saros 158)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
June 5, 1826
(Saros 144)
 
May 16, 1855
(Saros 145)
 
April 25, 1884
(Saros 146)
 
April 6, 1913
(Saros 147)
 
March 16, 1942
(Saros 148)
 
February 25, 1971
(Saros 149)
 
February 5, 2000
(Saros 150)
 
January 14, 2029
(Saros 151)
 
December 26, 2057
(Saros 152)
 
December 6, 2086
(Saros 153)
 
November 16, 2115
(Saros 154)
 
October 26, 2144
(Saros 155)
 
October 7, 2173
(Saros 156)

References

edit
  1. ^ "January 14, 2029 Partial Solar Eclipse". timeanddate. Retrieved 13 August 2024.
  2. ^ "Partial Solar Eclipse of 2029 Jan 14". EclipseWise.com. Retrieved 13 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.
edit