An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061,[1] with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.1 days before apogee (on April 21, 2061, at 4:00 UTC), the Moon's apparent diameter will be smaller.[2]
Solar eclipse of October 13, 2061 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.9639 |
Magnitude | 0.9469 |
Maximum eclipse | |
Duration | 221 s (3 min 41 s) |
Coordinates | 62°06′S 54°24′W / 62.1°S 54.4°W |
Max. width of band | 743 km (462 mi) |
Times (UTC) | |
Greatest eclipse | 10:32:10 |
References | |
Saros | 154 (9 of 71) |
Catalog # (SE5000) | 9645 |
The path of annularity will be visible from parts of southern Chile, southern Argentina, the Falkland Islands, and Antarctica. A partial solar eclipse will also be visible for much of South America and Antarctica.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2061 October 13 at 08:10:37.0 UTC |
First Umbral External Contact | 2061 October 13 at 09:55:37.2 UTC |
First Central Line | 2061 October 13 at 10:02:17.8 UTC |
First Umbral Internal Contact | 2061 October 13 at 10:10:51.8 UTC |
Greatest Eclipse | 2061 October 13 at 10:32:09.7 UTC |
Greatest Duration | 2061 October 13 at 10:35:25.8 UTC |
Ecliptic Conjunction | 2061 October 13 at 10:43:11.8 UTC |
Last Umbral Internal Contact | 2061 October 13 at 10:52:48.0 UTC |
Last Central Line | 2061 October 13 at 11:01:25.4 UTC |
Last Umbral External Contact | 2061 October 13 at 11:08:09.4 UTC |
Equatorial Conjunction | 2061 October 13 at 11:30:32.9 UTC |
Last Penumbral External Contact | 2061 October 13 at 12:53:24.7 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.94691 |
Eclipse Obscuration | 0.89664 |
Gamma | −0.96393 |
Sun Right Ascension | 13h16m11.1s |
Sun Declination | -08°03'03.6" |
Sun Semi-Diameter | 16'01.7" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 13h14m30.5s |
Moon Declination | -08°50'16.1" |
Moon Semi-Diameter | 15'07.5" |
Moon Equatorial Horizontal Parallax | 0°55'30.4" |
ΔT | 91.6 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
September 29 Ascending node (full moon) |
October 13 Descending node (new moon) |
---|---|
Total lunar eclipse Lunar Saros 128 |
Annular solar eclipse Solar Saros 154 |
Related eclipses
editEclipses in 2061
edit- A total lunar eclipse on April 4.
- A total solar eclipse on April 20.
- A total lunar eclipse on September 29.
- An annular solar eclipse on October 13.
Metonic
edit- Preceded by: Solar eclipse of December 26, 2057
- Followed by: Solar eclipse of August 2, 2065
Tzolkinex
edit- Preceded by: Solar eclipse of September 2, 2054
- Followed by: Solar eclipse of November 24, 2068
Half-Saros
edit- Preceded by: Lunar eclipse of October 8, 2052
- Followed by: Lunar eclipse of October 19, 2070
Tritos
edit- Preceded by: Solar eclipse of November 14, 2050
- Followed by: Solar eclipse of September 12, 2072
Solar Saros 154
edit- Preceded by: Solar eclipse of October 3, 2043
- Followed by: Solar eclipse of October 24, 2079
Inex
edit- Preceded by: Solar eclipse of November 3, 2032
- Followed by: Solar eclipse of September 23, 2090
Triad
edit- Preceded by: Solar eclipse of December 13, 1974
- Followed by: Solar eclipse of August 14, 2148
Solar eclipses of 2058–2061
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.
Solar eclipse series sets from 2058 to 2061 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | May 22, 2058 Partial |
−1.3194 | 124 | November 16, 2058 Partial |
1.1224 | |
129 | May 11, 2059 Total |
−0.508 | 134 | November 5, 2059 Annular |
0.4454 | |
139 | April 30, 2060 Total |
0.2422 | 144 | October 24, 2060 Annular |
−0.2625 | |
149 | April 20, 2061 Total |
0.9578 | 154 | October 13, 2061 Annular |
−0.9639 |
Saros 154
editThis eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit.[5]
Series members 1–16 occur between 1917 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 19, 1917 |
July 30, 1935 |
August 9, 1953 |
4 | 5 | 6 |
August 20, 1971 |
August 31, 1989 |
September 11, 2007 |
7 | 8 | 9 |
September 21, 2025 |
October 3, 2043 |
October 13, 2061 |
10 | 11 | 12 |
October 24, 2079 |
November 4, 2097 |
November 16, 2115 |
13 | 14 | 15 |
November 26, 2133 |
December 8, 2151 |
December 18, 2169 |
16 | ||
December 29, 2187 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 eclipse events between May 21, 1993 and May 20, 2069 | ||||
---|---|---|---|---|
May 20–21 | March 9 | December 25–26 | October 13–14 | August 1–2 |
118 | 120 | 122 | 124 | 126 |
May 21, 1993 |
March 9, 1997 |
December 25, 2000 |
October 14, 2004 |
August 1, 2008 |
128 | 130 | 132 | 134 | 136 |
May 20, 2012 |
March 9, 2016 |
December 26, 2019 |
October 14, 2023 |
August 2, 2027 |
138 | 140 | 142 | 144 | 146 |
May 21, 2031 |
March 9, 2035 |
December 26, 2038 |
October 14, 2042 |
August 2, 2046 |
148 | 150 | 152 | 154 | 156 |
May 20, 2050 |
March 9, 2054 |
December 26, 2057 |
October 13, 2061 |
August 2, 2065 |
158 | ||||
May 20, 2069 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.
Series members between 1801 and 2105 | ||||
---|---|---|---|---|
September 28, 1810 (Saros 131) |
August 27, 1821 (Saros 132) |
July 27, 1832 (Saros 133) |
June 27, 1843 (Saros 134) |
May 26, 1854 (Saros 135) |
April 25, 1865 (Saros 136) |
March 25, 1876 (Saros 137) |
February 22, 1887 (Saros 138) |
January 22, 1898 (Saros 139) |
December 23, 1908 (Saros 140) |
November 22, 1919 (Saros 141) |
October 21, 1930 (Saros 142) |
September 21, 1941 (Saros 143) |
August 20, 1952 (Saros 144) |
July 20, 1963 (Saros 145) |
June 20, 1974 (Saros 146) |
May 19, 1985 (Saros 147) |
April 17, 1996 (Saros 148) |
March 19, 2007 (Saros 149) |
February 15, 2018 (Saros 150) |
January 14, 2029 (Saros 151) |
December 15, 2039 (Saros 152) |
November 14, 2050 (Saros 153) |
October 13, 2061 (Saros 154) |
September 12, 2072 (Saros 155) |
August 13, 2083 (Saros 156) |
July 12, 2094 (Saros 157) |
June 12, 2105 (Saros 158) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
April 13, 1801 (Saros 145) |
March 24, 1830 (Saros 146) |
March 4, 1859 (Saros 147) |
February 11, 1888 (Saros 148) |
January 23, 1917 (Saros 149) |
January 3, 1946 (Saros 150) |
December 13, 1974 (Saros 151) |
November 23, 2003 (Saros 152) |
November 3, 2032 (Saros 153) |
October 13, 2061 (Saros 154) |
September 23, 2090 (Saros 155) |
September 5, 2119 (Saros 156) |
August 14, 2148 (Saros 157) |
July 25, 2177 (Saros 158) |
References
edit- ^ "October 13, 2061 Annular Solar Eclipse". timeanddate. Retrieved 17 August 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 17 August 2024.
- ^ "Annular Solar Eclipse of 2061 Oct 13". EclipseWise.com. Retrieved 17 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 154". eclipse.gsfc.nasa.gov.