Template:List of oxidation states of the elements

This table lists only the occurrences in compounds and complexes, not pure elements in their standard state or allotropes.

  Noble gas
+1 Bold values are main oxidation states
Element Negative states Positive states Group Notes
−5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9
Z
1 hydrogen H −1 +1 1
2 helium He 18
3 lithium Li +1 1
4 beryllium Be 0 +1 +2 2 [1] [2]
5 boron B −5 −1 0 +1 +2 +3 13 [3] [4][5] [6] [6][7][8]
6 carbon C −4 −3 −2 −1 0 +1 +2 +3 +4 14 [6] [6] [6] [6] [6] [6]
7 nitrogen N −3 −2 −1 0 +1 +2 +3 +4 +5 15 [6] [6][9] [6] [6] [6]
8 oxygen O −2 −1 0 +1 +2 16 [6] [6] [6]
9 fluorine F −1 17
10 neon Ne 18
11 sodium Na −1 0 +1 1 [6][10]
12 magnesium Mg 0 +1 +2 2 [11] [12]
13 aluminium Al −2 −1 0 +1 +2 +3 13 [13] [6][14] [15] ?
14 silicon Si −4 −3 −2 −1 0 +1 +2 +3 +4 14 [6] [6] [6][16] [6][17] [6] [6]
15 phosphorus P −3 −2 −1 0 +1 +2 +3 +4 +5 15 [6] [6][18] [6][19] [6] [6]
16 sulfur S −2 −1 0 +1 +2 +3 +4 +5 +6 16 [6] [6] [6] [6]
17 chlorine Cl −1 +1 +2 +3 +4 +5 +6 +7 17 [6] [6] [6]
18 argon Ar 18
19 potassium K −1 +1 1 ?
20 calcium Ca +1 +2 2 [20]
21 scandium Sc 0 +1 +2 +3 3 [21] [22] [23]
22 titanium Ti −2 −1 0 +1 +2 +3 +4 4 [6][24] [25] [6] [6] ?
23 vanadium V −3 −1 0 +1 +2 +3 +4 +5 5 [6] [6] [6] [6] [6] ?
24 chromium Cr −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [6] [6] [6] [6] [6] [6] ?
25 manganese Mn −3 −1 0 +1 +2 +3 +4 +5 +6 +7 7 [6] [6] [6], [6] [6], [6] ?
26 iron Fe −4 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 8 [6] [6] [26] [6] [27] [6] [28] ?
27 cobalt Co −3 −1 0 +1 +2 +3 +4 +5 9 [6] [6] [6] [29] ?
28 nickel Ni −2 −1 0 +1 +2 +3 +4 10 [6] [30] [6] [31] ?
29 copper Cu −2 0 +1 +2 +3 +4 11 [32] [6] [6] [6] ?
30 zinc Zn −2 0 +1 +2 12 ?
31 gallium Ga −5 −4 −3 −2 −1 0 +1 +2 +3 13 [33] [6] [6][34] ?
32 germanium Ge −4 −3 −2 −1 0 +1 +2 +3 +4 14 [35] [6] [6] ?
33 arsenic As −3 −2 −1 0 +1 +2 +3 +4 +5 15 [36] [37] [6] ?
34 selenium Se −2 −1 0 +1 +2 +3 +4 +5 +6 16 [38] [39] ?
35 bromine Br −1 +1 +2 +3 +4 +5 +7 17 [40] [6] [6]
36 krypton Kr +1 +2 18 ?
37 rubidium Rb −1 +1 1 ?
38 strontium Sr +1 +2 2 [41]
39 yttrium Y 0 +1 +2 +3 3 [42] [6] ?
40 zirconium Zr +1 +2 +3 +4 4 [6] [43][44] [6]
41 niobium Nb −3 −1 0 +1 +2 +3 +4 +5 5 [6] [6] [6] [6] ?
42 molybdenum Mo −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [6] [6] [6] [6] [6] [6] ?
43 technetium Tc −3 −1 +1 +2 +3 +4 +5 +6 +7 7 [6] [6] [6] [6] [6] [6] [6]
44 ruthenium Ru −4 −2 +1 +2 +3 +4 +5 +6 +7 +8 8 [6] [6] [6] [6] [6] [6] [6] ?
45 rhodium Rh −3 −1 +1 +2 +3 +4 +5 +6 +7 9 [45] [6] [6] [6] [6] [6] [6] [46]
46 palladium Pd +1 +2 +3 +4 +5 10 [47] ?
47 silver Ag −2 −1 0 +1 +2 +3 11 [48] [6] [6] ?
48 cadmium Cd −2 +1 +2 12 ?
49 indium In −5 −2 −1 0 +1 +2 +3 13 [49] [6] [6] [50] ?
50 tin Sn −4 −3 −2 −1 0 +1 +2 +3 +4 14 [51] [52] [53] ?
51 antimony Sb −3 −2 −1 0 +1 +2 +3 +4 +5 15 [54] ?
52 tellurium Te −2 −1 0 +1 +2 +3 +4 +5 +6 16 [6] ?
53 iodine I −1 +1 +2 +3 +4 +5 +6 +7 17 [55] ?
54 xenon Xe +2 +4 +6 +8 18 [56]
55 caesium Cs −1 +1 1 [57]
56 barium Ba +1 +2 2 ?
57 lanthanum La 0 +1 +2 +3 f-block groups [42] [58] [6]
58 cerium Ce +1 +2 +3 +4 f-block groups [6] ?
59 praseodymium Pr 0 +1 +2 +3 +4 +5 f-block groups [42] [59] ?
60 neodymium Nd 0 +2 +3 +4 f-block groups [42] [6]
61 promethium Pm +2 +3 f-block groups ?
62 samarium Sm 0 +1 +2 +3 f-block groups [42] [60] [6]
63 europium Eu 0 +2 +3 f-block groups 0[42]
64 gadolinium Gd 0 +1 +2 +3 f-block groups [42] [6] [6]
65 terbium Tb 0 +1 +2 +3 +4 f-block groups [42] [58] [6] ?
66 dysprosium Dy 0 +1 +2 +3 +4 f-block groups [42] [6] ?
67 holmium Ho 0 +1 +2 +3 f-block groups [42] ?
68 erbium Er 0 +1 +2 +3 f-block groups [42] ?
69 thulium Tm 0 +1 +2 +3 f-block groups [42] [58] [6]
70 ytterbium Yb 0 +1 +2 +3 f-block groups [42] [58] [6]
71 lutetium Lu 0 +1 +2 +3 3 [42] ?
72 hafnium Hf −2 0 +1 +2 +3 +4 4 [6], [6] ?
73 tantalum Ta −3 −1 0 +1 +2 +3 +4 +5 5 [6] [6] [6] [6] ?
74 tungsten W −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [6] [6] [6] [6] [6] [6] ?
75 rhenium Re −3 −1 0 +1 +2 +3 +4 +5 +6 +7 7 [6] [6] [6], [6] [6] [6] [6] [6] ?
76 osmium Os −4 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 8 [6] [6] [6] [6] [6] [6] [6] [6] ?
77 iridium Ir −3 −2 −1 +1 +2 +3 +4 +5 +6 +7 +8 +9 9 [6] [6] [6] [6] [6] [61] ?
78 platinum Pt −3 −2 −1 0 +1 +2 +3 +4 +5 +6 10 [6] [6] ?
79 gold Au −3 −2 −1 0 +1 +2 +3 +5 11 [6] [62] [6] [6] ?
80 mercury Hg −2 +1 +2 12 [63]
81 thallium Tl −5 −2 −1 +1 +2 +3 13 [64] ?
82 lead Pb −4 −2 −1 0 +1 +2 +3 +4 14 [6] [65] ?
83 bismuth Bi −3 −2 −1 0 +1 +2 +3 +4 +5 15 [6] [66] [6] ?
84 polonium Po −2 +2 +4 +5 +6 16 [67] [6]
85 astatine At −1 +1 +3 +5 +7 17 [6] [6] [6]
86 radon Rn +2 +6 18 ?
87 francium Fr +1 1
88 radium Ra +2 2
89 actinium Ac +3 f-block groups
90 thorium Th −1 +1 +2 +3 +4 f-block groups [68] [6] [6] ?
91 protactinium Pa +2 +3 +4 +5 f-block groups [6] [6] ?
92 uranium U −1 +1 +2 +3 +4 +5 +6 f-block groups [68] [69] [6] [6] ?
93 neptunium Np +2 +3 +4 +5 +6 +7 f-block groups [6] [70] [6] [6] ?
94 plutonium Pu +2 +3 +4 +5 +6 +7 +8 f-block groups [6], [6] [6] [6] ?
95 americium Am +2 +3 +4 +5 +6 +7 f-block groups [6] [6] [6] [6]
96 curium Cm +3 +4 +5 +6 f-block groups [6] [71] [72]
97 berkelium Bk +2 +3 +4 +5 f-block groups [6] [71] ?
98 californium Cf +2 +3 +4 +5 f-block groups [6] [6] [73][71]
99 einsteinium Es +2 +3 +4 f-block groups [6]
100 fermium Fm +2 +3 f-block groups [6]
101 mendelevium Md +2 +3 f-block groups [6]
102 nobelium No +2 +3 f-block groups [6]
103 lawrencium Lr +3 3
104 rutherfordium Rf +3 +4 4 [74]
105 dubnium Db +3 +4 +5 5 [74]
106 seaborgium Sg +3 +4 +5 +6 6 [74]
107 bohrium Bh +3 +4 +5 +7 7 [74]
108 hassium Hs +3 +4 +6 +8 8 [74]
109 meitnerium Mt +1 +3 +6 9 [74]
110 darmstadtium Ds +2 +4 +6 10 [74]
111 roentgenium Rg −1 +3 +5 11 [74]
112 copernicium Cn +2 +4 12 [74]
113 nihonium Nh 13
114 flerovium Fl 14
115 moscovium Mc 15
116 livermorium Lv −2 +4 16 [75]
117 tennessine Ts −1 +5 17
118 oganesson Og −1 +1 +2 +4 +6 18 [74] [76] [77] [77] [74]
  1. ^ Be(0) has been observed; see "Beryllium(0) Complex Found". Chemistry Europe. 13 June 2016.
  2. ^ "Beryllium: Beryllium(I) Hydride compound data" (PDF). bernath.uwaterloo.ca. Retrieved 2007-12-10.
  3. ^ B(−5) has been observed in Al3BC, see Schroeder, Melanie. "Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden" (in German). p. 139.
  4. ^ B(−1) has been observed in magnesium diboride (MgB2), see Keeler, James; Wothers, Peter (2014). Chemical Structure and Reactivity: An Integrated Approach. Oxford University Press. ISBN 9780199604135.
  5. ^ Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. (2012). "Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond". Science. 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  7. ^ Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF" (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
  8. ^ Schroeder, Melanie. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden (PDF) (in German). p. 139.
  9. ^ Tetrazoles contain a pair of double-bonded nitrogen atoms with oxidation state 0 in the ring. A Synthesis of the parent 1H-tetrazole, CH2N4 (two atoms N(0)) is given in Henry, Ronald A.; Finnegan, William G. (1954). "An Improved Procedure for the Deamination of 5-Aminotetrazole". Journal of the American Chemical Society. 76 (1): 290–291. doi:10.1021/ja01630a086. ISSN 0002-7863.
  10. ^ The compound NaCl has been shown in experiments to exists in several unusual stoichiometries under high pressure, including Na3Cl in which contains a layer of sodium(0) atoms; see Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konôpková, Z. (2013). "Unexpected Stable Stoichiometries of Sodium Chlorides". Science. 342 (6165): 1502–1505. arXiv:1310.7674. Bibcode:2013Sci...342.1502Z. doi:10.1126/science.1244989. PMID 24357316. S2CID 15298372.
  11. ^ Mg(0) has been synthesized in a compound containing a Na2Mg22+ cluster coordinated to a bulky organic ligand; see Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Li, W.; Harder, S. (2021). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274. S2CID 233447380
  12. ^ Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.. See also Low valent magnesium compounds.
  13. ^ Unstable carbonyl of Al(0) has been detected in reaction of Al2(CH3)6 with carbon monoxide; see Sanchez, Ramiro; Arrington, Caleb; Arrington Jr., C. A. (December 1, 1989). "Reaction of trimethylaluminum with carbon monoxide in low-temperature matrixes". American Chemical Society. 111 (25): 9110-9111. doi:10.1021/ja00207a023. OSTI 6973516.
  14. ^ Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
  15. ^ Tyte, D. C. (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0. S2CID 4163250.
  16. ^ "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
  17. ^ Ram, R. S.; et al. (1998). "Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD" (PDF). J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
  18. ^ Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. (2008). "Carbene-Stabilized Diphosphorus". Journal of the American Chemical Society. 130 (45): 14970–1. doi:10.1021/ja807828t. PMID 18937460.
  19. ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2006). "Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds". Inorganic Chemistry. 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
  20. ^ Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  21. ^ Cloke, F. Geoffrey N.; Khan, Karl & Perutz, Robin N. (1991). "η-Arene complexes of scandium(0) and scandium(II)". J. Chem. Soc., Chem. Commun. (19): 1372–1373. doi:10.1039/C39910001372.
  22. ^ Smith, R. E. (1973). "Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 332 (1588): 113–127. Bibcode:1973RSPSA.332..113S. doi:10.1098/rspa.1973.0015. S2CID 96908213.
  23. ^ McGuire, Joseph C.; Kempter, Charles P. (1960). "Preparation and Properties of Scandium Dihydride". Journal of Chemical Physics. 33 (5): 1584–1585. Bibcode:1960JChPh..33.1584M. doi:10.1063/1.1731452.
  24. ^ Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G. Jr.; Ellis, John E. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6:[Ti(CO)4(S2CNR2)]". Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID 17579764.
  25. ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm". J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
  26. ^ Ram, R. S.; Bernath, P. F. (2003). "Fourier transform emission spectroscopy of the g4Δ–a4Δ system of FeCl". Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
  27. ^ Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). "Recent developments in the field of high oxidation states of transition elements in oxides stabilization of six-coordinated Iron(V)". Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
  28. ^ Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
  29. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
  30. ^ Pfirrmann, Stefan; Limberg, Christian; Herwig, Christian; Stößer, Reinhard; Ziemer, Burkhard (2009). "A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps". Angewandte Chemie International Edition. 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
  31. ^ Carnes, Matthew; Buccella, Daniela; Chen, Judy Y.-C.; Ramirez, Arthur P.; Turro, Nicholas J.; Nuckolls, Colin; Steigerwald, Michael (2009). "A Stable Tetraalkyl Complex of Nickel(IV)". Angewandte Chemie International Edition. 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
  32. ^ Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. (2013). "A Polar Copper–Boron One-Electron σ-Bond". J. Am. Chem. Soc. 135 (10): 3792–3795. doi:10.1021/ja4006578. PMID 23418750.
  33. ^ Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline (2011). "Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen" (PDF). Z. Naturforsch. (in German). 66b: 1107–1121.
  34. ^ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (Thesis) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. hdl:20.500.11850/143357. ISBN 978-3728125972.
  35. ^ "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
  36. ^ Abraham, Mariham Y.; Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Shaefer III, Henry F.; Schleyer, P. von R.; Robinson, Gregory H. (2010). "Carbene Stabilization of Diarsenic: From Hypervalency to Allotropy". Chemistry: A European Journal. 16 (2): 432–5. doi:10.1002/chem.200902840. PMID 19937872.
  37. ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2004). "Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters". Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  38. ^ A Se(0) atom has been identified using DFT in [ReOSe(2-pySe)3]; see Cargnelutti, Roberta; Lang, Ernesto S.; Piquini, Paulo; Abram, Ulrich (2014). "Synthesis and structure of [ReOSe(2-Se-py)3]: A rhenium(V) complex with selenium(0) as a ligand". Inorganic Chemistry Communications. 45: 48–50. doi:10.1016/j.inoche.2014.04.003. ISSN 1387-7003.
  39. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  40. ^ Br(II) is known to occur in bromine monoxide radical; see Kinetics of the bromine monoxide radical + bromine monoxide radical reaction
  41. ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  42. ^ a b c d e f g h i j k l m n Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  43. ^ Calderazzo, Fausto; Pampaloni, Guido (January 1992). "Organometallics of groups 4 and 5: Oxidation states II and lower". Journal of Organometallic Chemistry. 423 (3): 307–328. doi:10.1016/0022-328X(92)83126-3.
  44. ^ Ma, Wen; Herbert, F. William; Senanayake, Sanjaya D.; Yildiz, Bilge (2015-03-09). "Non-equilibrium oxidation states of zirconium during early stages of metal oxidation". Applied Physics Letters. 106 (10). Bibcode:2015ApPhL.106j1603M. doi:10.1063/1.4914180. hdl:1721.1/104888. ISSN 0003-6951.
  45. ^ Ellis J E. Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties. Adv. Organomet. Chem, 1990, 31: 1-51.
  46. ^ Rh(VII) is known in the RhO3+ cation, see Da Silva Santos, Mayara; Stüker, Tony; Flach, Max; Ablyasova, Olesya S.; Timm, Martin; von Issendorff, Bernd; Hirsch, Konstantin; Zamudio‐Bayer, Vicente; Riedel, Sebastian; Lau, J. Tobias (2022). "The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+". Angew. Chem. Int. Ed. 61 (38): e202207688. doi:10.1002/anie.202207688. PMC 9544489. PMID 35818987.
  47. ^ Palladium(V) has been identified in complexes with organosilicon compounds containing pentacoordinate palladium; see Shimada, Shigeru; Li, Yong-Hua; Choe, Yoong-Kee; Tanaka, Masato; Bao, Ming; Uchimaru, Tadafumi (2007). "Multinuclear palladium compounds containing palladium centers ligated by five silicon atoms". Proceedings of the National Academy of Sciences. 104 (19): 7758–7763. doi:10.1073/pnas.0700450104. PMC 1876520. PMID 17470819.
  48. ^ Ag(0) has been observed in carbonyl complexes in low-temperature matrices: see McIntosh, D.; Ozin, G. A. (1976). "Synthesis using metal vapors. Silver carbonyls. Matrix infrared, ultraviolet-visible, and electron spin resonance spectra, structures, and bonding of silver tricarbonyl, silver dicarbonyl, silver monocarbonyl, and disilver hexacarbonyl". J. Am. Chem. Soc. 98 (11): 3167–75. doi:10.1021/ja00427a018.
  49. ^ Unstable In(0) carbonyls and clusters have been detected, see [1], p. 6.
  50. ^ Guloy, A. M.; Corbett, J. D. (1996). "Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties". Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e. PMID 11666477.
  51. ^ "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
  52. ^ "HSn". NIST Chemistry WebBook. National Institute of Standards and Technology. Retrieved 23 January 2013.
  53. ^ "SnH3". NIST Chemistry WebBook. National Institure of Standards and Technology. Retrieved 23 January 2013.
  54. ^ Anastas Sidiropoulos (2019). "Studies of N-heterocyclic Carbene (NHC) Complexes of the Main Group Elements" (PDF). p. 39. doi:10.4225/03/5B0F4BDF98F60. S2CID 132399530.
  55. ^ I(II) is known to exist in monoxide (IO); see Nikitin, I V (31 August 2008). "Halogen monoxides". Russian Chemical Reviews. 77 (8): 739–749. Bibcode:2008RuCRv..77..739N. doi:10.1070/RC2008v077n08ABEH003788. S2CID 250898175.
  56. ^ Harding, Charlie; Johnson, David Arthur; Janes, Rob (2002). Elements of the p block. Great Britain: Royal Society of Chemistry. pp. 93–94. ISBN 0-85404-690-9.
  57. ^ Dye, J. L. (1979). "Compounds of Alkali Metal Anions". Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
  58. ^ a b c d La(I), Pr(I), Tb(I), Tm(I), and Yb(I) have been observed in MB8 clusters; see Li, Wan-Lu; Chen, Teng-Teng; Chen, Wei-Jia; Li, Jun; Wang, Lai-Sheng (2021). "Monovalent lanthanide(I) in borozene complexes". Nature Communications. 12 (1): 6467. doi:10.1038/s41467-021-26785-9. PMC 8578558. PMID 34753931.
  59. ^ Chen, Xin; et al. (2019-12-13). "Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295. S2CID 56148031.
  60. ^ SmB6- cluster anion has been reported and contains Sm in rare oxidation state of +1; see Paul, J. Robinson; Xinxing, Zhang; Tyrel, McQueen; Kit, H. Bowen; Anastassia, N. Alexandrova (2017). "SmB6 Cluster Anion: Covalency Involving f Orbitals". J. Phys. Chem. A 2017,? 121,? 8,? 1849–1854. 121 (8): 1849–1854. doi:10.1021/acs.jpca.7b00247. PMID 28182423. S2CID 3723987..
  61. ^ Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786. S2CID 4463905.
  62. ^ Mézaille, Nicolas; Avarvari, Narcis; Maigrot, Nicole; Ricard, Louis; Mathey, François; Le Floch, Pascal; Cataldo, Laurent; Berclaz, Théo; Geoffroy, Michel (1999). "Gold(I) and Gold(0) Complexes of Phosphinine‐Based Macrocycles". Angewandte Chemie International Edition. 38 (21): 3194–3197. doi:10.1002/(SICI)1521-3773(19991102)38:21<3194::AID-ANIE3194>3.0.CO;2-O. PMID 10556900.
  63. ^ Brauer, G.; Haucke, W. (1936-06-01). "Kristallstruktur der intermetallischen Phasen MgAu und MgHg". Zeitschrift für Physikalische Chemie. 33B (1): 304–310. doi:10.1515/zpch-1936-3327. ISSN 2196-7156. MgHg then lends itself to an oxidation state of +2 for Mg and -2 for Hg because it consists entirely of these polar bonds with no evidence of electron unpairing. (translated)
  64. ^ Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z. PMID 11666505.
  65. ^ Pb(0) carbonyls have been observered in reaction between lead atoms and carbon monoxide; see Ling, Jiang; Qiang, Xu (2005). "Observation of the lead carbonyls PbnCO (n=1–4): Reactions of lead atoms and small clusters with carbon monoxide in solid argon". The Journal of Chemical Physics. 122 (3): 034505. 122 (3): 34505. Bibcode:2005JChPh.122c4505J. doi:10.1063/1.1834915. ISSN 0021-9606. PMID 15740207.
  66. ^ Bi(0) state exists in a N-heterocyclic carbene complex of dibismuthene; see Deka, Rajesh; Orthaber, Andreas (May 9, 2022). "Carbene chemistry of arsenic, antimony, and bismuth: origin, evolution and future prospects". Royal Society of Chemistry. 51 (22): 8540–8556. doi:10.1039/d2dt00755j. PMID 35578901. S2CID 248675805.
  67. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  68. ^ a b Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see Chaoxian, Chi; Sudip, Pan; Jiaye, Jin; Luyan, Meng; Mingbiao, Luo; Lili, Zhao; Mingfei, Zhou; Gernot, Frenking (2019). "Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding". Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784. 25 (50): 11772–11784. doi:10.1002/chem.201902625. ISSN 0947-6539. PMC 6772027. PMID 31276242.
  69. ^ Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464.
  70. ^ Np(II), (III) and (IV) have been observed, see Dutkiewicz, Michał S.; Apostolidis, Christos; Walter, Olaf; Arnold, Polly L (2017). "Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding". Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMC 5431675. PMID 28553487.
  71. ^ a b c Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. 57 (15). American Chemical Society: 9453–9467. doi:10.1021/acs.inorgchem.8b01450. OSTI 1631597. PMID 30040397. S2CID 51717837.
  72. ^ Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. 53 (5). SP MAIK Nauka/Interperiodica: 453–6. doi:10.1134/S1066362211050018. S2CID 98052484.
  73. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1265. ISBN 978-0-08-037941-8.
  74. ^ a b c d e f g h i j k Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  75. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  76. ^ Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)". Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
  77. ^ a b Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.