User:Pfafrich/Blahtex en.wikipedia fixup
This page is part a set of pages devoted to fixing latex bugs in the english wikipedia so that they will be compatable with the meta:Blahtex MathML project.
Below are pages which contain the character $ inside a math tag. Each occurence should be replaced by \$ and when fixed the pages should be moved to the done section. Feel free to fix as necessary.
Expected value -
(
−
$
1
×
37
38
)
+
(
$
35
×
1
38
)
,
{\displaystyle \left(-\$1\times {\frac {37}{38}}\right)+\left(\$35\times {\frac {1}{38}}\right),}
Factorial -
n
$
≡
n
!
n
!
⋅
⋅
⋅
n
!
⏟
n
!
{\displaystyle n\$\equiv {\begin{matrix}\underbrace {n!^{{n!}^{{\cdot }^{{\cdot }^{{\cdot }^{n!}}}}}} \\n!\end{matrix}}\,}
Factorial -
n
$
=
n
(
4
)
n
{\displaystyle n\$=n^{(4)}n\,}
Factorial -
n
$
=
(
n
!
)
↑↑
(
n
!
)
{\displaystyle n\$=(n!)\uparrow \uparrow (n!)\,}
Factorial -
1
$
=
1
{\displaystyle 1\$=1\,}
Factorial -
2
$
=
2
2
=
4
{\displaystyle 2\$=2^{2}=4\,}
Factorial -
3
$
=
6
↑↑
6
=
6
6
6
6
6
6
{\displaystyle 3\$=6\uparrow \uparrow 6=6^{6^{6^{6^{6^{6}}}}}\!}
Incandescent light bulb -
(
60
w
a
t
t
s
)
×
(
8000
h
o
u
r
s
)
×
(
$
0.10
1000
w
a
t
t
⋅
h
o
u
r
s
)
=
$
48
{\displaystyle \left(60\ watts\right)\times \left(8000\ hours\right)\times \left({\frac {\$0.10}{1000\ watt\cdot hours}}\right)=\$48}
Incandescent light bulb -
(
15
w
a
t
t
s
)
×
(
8000
h
o
u
r
s
)
×
(
$
0.10
1000
w
a
t
t
⋅
h
o
u
r
s
)
=
$
12
{\displaystyle \left(15\ watts\right)\times \left(8000\ hours\right)\times \left({\frac {\$0.10}{1000\ watt\cdot hours}}\right)=\$12}
Time value of money -
F
=
P
×
(
F
/
P
)
=
P
×
(
1
+
r
)
n
=
$
100
×
(
1
+
0.05
)
1
=
$
105
{\displaystyle F\ =\ P\times (F/P)\ =\ P\times (1+r)^{n}\ =\ \$100\times {(1+0.05)^{1}}=\ \$105}
Time value of money -
A
=
P
×
(
A
/
P
)
=
P
×
r
(
1
+
r
)
n
(
1
+
r
)
n
−
1
=
$
200
,
000
×
0.005
(
1.005
)
360
(
1.005
)
360
−
1
{\displaystyle A\ =\ P\times \left(A/P\right)\ =\ P\times {r(1+r)^{n} \over (1+r)^{n}-1}\ =\ \$200,000\times {0.005(1.005)^{360} \over (1.005)^{360}-1}}
Time value of money -
=
$
200
,
000
×
0.006
=
$
1
,
200
p
e
r
m
o
n
t
h
{\displaystyle =\ \$200,000\times 0.006\ =\ \$1,200{\rm {\ per\ month}}}
Risk aversion -
(
$
50
−
$
40
)
/
$
40
{\displaystyle (\$50-\$40)/\$40}
Exponential growth -
$
1
×
(
1
+
0.05
)
1
=
$
1.05
{\displaystyle \$1\times (1+0.05)^{1}=\$1.05}
Exponential growth -
$
1
×
(
1
+
0.05
)
10
=
$
1.62
{\displaystyle \$1\times (1+0.05)^{10}=\$1.62}
Exponential growth -
$
1
×
(
1
+
0.05
)
=
$
1.05
{\displaystyle \$1\times (1+0.05)=\$1.05}
Talk:Economy of Russia -
GDP - purchasing power parity
population
=
620.3
billion
$
145470197
people
=
4264
$
≠
7700
$
{\displaystyle {\frac {\mbox{GDP - purchasing power parity}}{\mbox{population}}}={\frac {620.3{\mbox{ billion }}\$}{145470197{\mbox{ people}}}}=4264\$\neq 7700\$}
Talk:Interest -
I
=
$
1000
⋅
e
0.1
⋅
1
=
$
1105.17
{\displaystyle I=\$1000\cdot e^{0.1\cdot 1}=\$1105.17}
Depreciation -
P
r
e
v
i
o
u
s
p
e
r
i
o
d
′
s
N
B
V
×
f
a
c
t
o
r
N
=
$
17000
×
2
5
=
$
6800
{\displaystyle {Previous\ period's\ NBV}\times {factor \over N}=\$17000\times {2 \over 5}=\$6800}
Depreciation -
N
B
V
1
=
$
17000
−
$
6800
=
$
10200
{\displaystyle NBV_{1}=\$17000-\$6800=\$10200}
Depreciation -
$
10200
×
2
5
=
$
4080
{\displaystyle \$10200\times {2 \over 5}=\$4080}
Interest parity condition -
i
$
=
i
D
+
e
$
e
−
e
$
e
$
(
1
+
i
D
)
{\displaystyle i_{\$}=i_{D}+{\frac {e_{\$}^{e}-e_{\$}}{e_{\$}}}(1+i_{D})}
Interest parity condition -
i
$
{\displaystyle i_{\$}}
Interest parity condition -
e
$
e
{\displaystyle e_{\$}^{e}}
Interest parity condition -
e
$
{\displaystyle e_{\$}}
Interest parity condition -
(
1
+
i
$
)
=
(
F
/
S
)
(
1
+
i
c
)
{\displaystyle \mathbf {} (1+i_{\$})=(F/S)(1+i_{c})}
Interest parity condition -
(
1
+
i
$
)
<
(
F
/
S
)
(
1
+
i
c
)
{\displaystyle (1+i_{\$})<(F/S)(1+i_{c})}
Interest parity condition -
i
$
=
i
D
+
e
$
e
−
e
$
e
$
{\displaystyle i_{\$}=i_{D}+{\frac {e_{\$}^{e}-e_{\$}}{e_{\$}}}}
Interest parity condition -
(
1
+
i
$
)
=
(
F
/
S
)
(
1
+
i
c
)
{\displaystyle \mathbf {} (1+i_{\$})=(F/S)(1+i_{c})}
Returns to scale -
(
1000
100
)
=
$
10
{\displaystyle \left({\frac {1000}{100}}\right)=\$10}
Returns to scale -
(
1000
200
)
=
$
5
{\displaystyle \left({\frac {1000}{200}}\right)=\$5}
Cash on cash return -
$
60,000
$
300,000
=
0.20
=
20
%
{\displaystyle {\frac {\$\ {\mbox{60,000}}}{\$\ {\mbox{300,000}}}}=0.20=20\%}
Point in a mortgage -
1.5
100
×
$
100
,
000
=
$
1
,
500
{\displaystyle {\frac {1.5}{100}}\times \$100,000=\$1,500}
Talk:Elon Peace Plan -
2.3
∗
10
11
$
{\displaystyle 2.3*10^{11}\$}
Talk:Burusera -
5
$
(
n
e
w
p
a
n
t
i
e
s
)
+
100
$
(
p
r
o
s
t
i
t
u
t
e
)
=
105
$
(
p
a
n
t
i
e
w
i
t
h
p
r
o
s
t
i
t
u
t
i
v
e
l
y
e
n
h
a
n
c
e
d
o
d
o
u
r
)
>
100
$
(
b
u
r
u
s
e
r
a
p
a
n
t
i
e
)
{\displaystyle \ 5\$(new\ panties)+100\$(prostitute)=105\$(pantie\ with\ prostitutively\ enhanced\ odour)>100\$(burusera\ pantie)}
User:Egil530/matematikk -
6
,
98
$
/
o
u
n
c
e
{\displaystyle 6,98\;\$/ounce\,}
User:Plutor/Carrying change -
D
a
m
p
;
=
a
m
p
;
2.5
g
$
0.01
a
m
p
;
=
a
m
p
;
250
g
/
$
a
m
p
;
≈
a
m
p
;
0.551
l
b
/
$
{\displaystyle {\begin{matrix}\mathbb {D} &=&{\frac {2.5g}{\$0.01}}\\\ &=&250\;g/\$\\\ &\approx &0.551\;lb/\$\end{matrix}}}
User:Plutor/Carrying change -
E
a
m
p
;
=
a
m
p
;
D
∗
2.7
m
i
2
m
p
h
∗
1
c
a
l
l
b
∗
h
r
a
m
p
;
=
a
m
p
;
D
∗
1.35
c
a
l
/
l
b
a
m
p
;
≈
a
m
p
;
0.744
c
a
l
/
$
{\displaystyle {\begin{matrix}\mathbb {E} &=&\mathbb {D} *{\frac {2.7\;mi}{2\;mph}}*{\frac {1\;cal}{lb*hr}}\\\ &=&\mathbb {D} *1.35\;cal/lb\\\ &\approx &0.744\;cal/\$\end{matrix}}}
Wikipedia:Reference desk archive/August 2005 III -
A
p
=
$
100
,
000
{\displaystyle A_{p}=\$100,000}
Wikipedia:Reference desk archive/August 2005 III -
R
≈
$
804.62
{\displaystyle R\approx \$804.62}
Wikipedia:Reference desk archive/August 2005 III -
R
=
$
1
,
685.39
{\displaystyle {\mathit {R=\$1,685.39}}}
Wikipedia:Reference desk archive/Science/September 2005 -
≈
−
$
1.24
{\displaystyle \approx -\$1.24}
Wikipedia:Reference desk archive/Science/September 2005 -
E
=
10
6
720
−
719
720
≈
$
1
,
387.89
{\displaystyle E={\frac {10^{6}}{720}}-{\frac {719}{720}}\approx \$1,387.89}
Wikipedia:Reference desk archive/Science/September 2005 -
E
=
(
10
6
−
1
)
1
P
(
10
6
,
6
)
+
(
−
1
)
(
1
−
1
P
(
10
6
,
6
)
)
=
−
$
1
{\displaystyle E=(10^{6}-1){\frac {1}{P(10^{6},6)}}+(-1)(1-{\frac {1}{P(10^{6},6)}})=-\$1}
User:Tcwd/Math -
$
500
×
4
%
2
{\displaystyle \$500\times {4\% \over 2}\,}
User:Omegatron/monobook.js/mathcharacterfixer.js -