In geometry, a disphenoid (from Greek sphenoeides 'wedgelike') is a tetrahedron whose four faces are congruent acute-angled triangles.[1] It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths.
A general disphenoid or di-wedge can be represented a join A∨B, where A and B are polytopes. rank(A∨B)=rank(A)+rank(B)+1.
A general trisphenoid or tri-wedge can be represented a join A∨B∨C, where A, B, and C are polytopes. rank(A∨B∨C)=rank(A)+rank(B)+rank(C)+2.
A general tetrasphenoid or tetra-wedge joins four polytopes, A∨B∨C∨D. rank(A∨B∨C∨D)=rank(A)+rank(B)+rank(C)+rank(D)+3. Each join operator adds one dimension.
A multi-wedge can be any of them, while a 3D geometric wedge is geometrically topologically different, more representing a quadrilateral and parallel segment offset by an orthogonal dimension.
A limiting case of a disphenoid is a pyramid, joining an n-polytope to a point (a 0-polytope), A∨( ). rank(A∨( ))=rank(A)+1. The join of a sequence of (n+1) joined points, ∨( )∨( )∨...∨( ) makes an n-simplex. For this reason, A join with a point can also be called a pyramid product.[2]
This article mostly offers examples with regular polytopes, while lower symmetry polytopes work identically. It also looks at equilateral multi-wedges which includes some uniform polytopes and johnson solids.
Properties
editThe join operator is:
- Identity element: nullitope: A∨∅ = A
- Commutative : A∨B = B∨A
- Associative : (with both join and sums)
- A∨B∨C = (A∨B)∨C = A∨(B∨C)
- A∨B+C = (A∨B)+C = A∨(B+C)
- Supports De Morgan's law with duality: *(A∨B) = (*A)∨(*B)
- rank(A∨B)=rank(A)+rank(B)+1
- Vertex figures:
- verf(A∨A) = verf(A)∨A
- verf(A∨B) = verf(A)∨B, A∨verf(B)
- verf(A∨A∨A) = verf(A)∨A∨A
- verf(A∨B∨C) = verf(A) ∨B∨C, A∨ verf(B) ∨C, A∨B∨ verf(C)
The join A∨B will be:
- Convex, if A and B are convex.
- self-dual, if A and B are self-dual, or if A and B are duals.
- A simplex, if A and B are simplexes.
When looking at vertices and edges alone as a graph, the join A∨B is the union of graphs A and B, and their connecting complete bipartite graph. It has vA+vB vertices, and eA+eA+vA×vB edges.
Multi-wedges have the vertices of all of the element polytopes. Their edges can be seen as the union of the edges of the element polytopes, and all connections of vertices between elements, as defining in a complete multipartite graph. Higher k-faces exist for all element permutations from nullitope to full polytopes joins.
Extended f-vectors
editThe f-vector counts the number of k-faces in a polytope, 0..n-1. Extended f-vectors can include end elements -1 and n, both 1. f-1=1, a nullitope, and fn=1, the body.
f0 is the number of vertices, f1 the number of edges, etc. Regular polygons, f({p})=(1,p,p,1).
If you join only points, f-vectors sum in simplexes as Pascal's triangle as binomial coefficients. A nullitope has f-vector (1). A point, ( ), has f( )=(1,1). Segment, f({ })=(1,2,1). A triangle has f({3})=(1,3,3,1). A tetrahedron has f({3,3})=(1,4,6,4,1).
A self-dual polytope will have f-vectors are forward-reverse symmetric.
k-faces of A∨B are generated by joins of all i-faces of A, and all (k-i)-faces of B. With i=-1 to k.
- The number of vertices are the sum of the vertices of each.
- New edges are edges of A, edges of B, and new edges between vertices of A and vertices of B.
- New faces are generated by all faces of A, all faces of B, and new faces from edges of A to every vertex of B, and edges of B to each vertex of A
- Etc
f-vector products
editThere are four classes of product operators, working directly on f-vectors. The join include both f-1, and fn. The rhombic sum only includes f-1, and its dual rectangular product only includes fn. The meet includes neither and only applies to flat elements.
For instance a triangle has f-vector (3,3), with 3 vertices (f0) and 3 edges (f1). Extended with the nullitope (f-1) gives f=(1,3,3), extending with the (polygonal interior) body (f2) gives f=(3,3,1), while extending both is f=(1,3,3,1).
The rhombic sum and rectangular product are dual operators, with f-vectors reversed. The join and rhombic sums shares vertex counts, summing vertices in elements. The rectangular and meet products also share vertex counts, being the product of the element vertex counts.
The meet product is the same as Cartesian product if elements are infinite. Meets are not connected unless polytopes are polygons or higher. For finite elements, like {n} with f=(n,n), or toroidal polyhedra {4,4}b,c, {3,6}b,c,{6,3}b,c with f=(n,2n,n), (n,3n,2n), and (2n,3n,n) respectively.
Operator names |
Symbols | f-vectors | Rank | Polytope names |
---|---|---|---|---|
Join[3] Join product[4] Pyramid product[5] |
A ∨ B A ⋈ B A ×1,1 B |
(1,fA,1) * (1,fB,1) | Rank(A)+Rank(B)+1 | A ∨ ( ) = pyramid A ∨ { } = wedge A ∨ B = di-wedge A ∨ B ∨ C = tri-wedge |
Sum "Rhombic sum"[3] Direct sum[4] Tegum product[5] |
A + B A ⊕ B A ×1,0 B |
(1,fA) * (1,fB) | Rank(A)+Rank(B) | A + { } = fusil or bipyramid A + B = di-fusil or duopyramid or double pyramid A + B + C = tri-fusil |
Product Rectangular product[3] Cartesian product[4] Prism product[5] |
A × B A ×0,1 B |
(fA,1) * (fB,1) | Rank(A)+Rank(B) | A × { } = prism A × B = duoprism or double prism A × B × C = tri-prism or triple prism |
Meet Topological product[4] Honeycomb product[5] |
A ∧ B A □ B A ×0,0 B |
fA * fB | Rank(A)+Rank(B)-1 | A ∧ { } = meet A ∧ B = di-meet or double meet A ∧ B ∧ C = tri-meet or triple meet |
A product A*B, with f-vectors fA and fB, fA∨B=fA*fB is computed like a polynomial multiplication polynomial coefficients.
For example for join of a triangle and dion, {3} ∨ { }:
- fA(x) = (1,3,3,1) = 1 + 3x + 3x2 + x3 (triangle)
- fB(x) = (1,2,1) = 1 + 2x + x2 (dion)
- fA∨B(x) = fA(x) * fB(x)
- = (1 + 3x + 3x2 + x3) * (1 + 2x + x2)
- = 1 + 5x + 10x2 + 10x3 + 5x4 + x5
- = (1,5,10,10,5,1) (triangle ∨ dion = 5-cell)
For a join, explicitly:
- k-face counts: f(A∨B)k = f(A)-1*f(B)k + f(A)0*f(B)k+ f(A)1*f(B)k-1 + ... + f(A)k*f(B)-1.
- k-face sets: (A∨B)k = {∀(A-1∨Bk), ∀(A0∨Bk), ∀(A1∨Bk-1), ..., ∀(Ak∨B-1)}, where Ai=set of i-faces in A, etc.
Factorization
editWe can factorize extended f-vectors or polynomials of any polytope. This factorization can represent a multi-wedge, if the elements are all valid polytopes.
For example, if we factorize fZ=fA*fB*fC, and fA,fB,fC represent valid polytope f-vectors, then Z=A∨B∨C.
A factorized f-vector can fail to represent valid element polytopes. For example a cubic pyramid, f=(1,9,20,18,7,1), can be decomposed into (1,8,12,6,1)*(1,1), as a join of a cube and a point, while a full factorization (1,7,5,1)*(1,1)2 has an invalid polygon element, f=(1,7,5,1). On the other hand, the f-vector is not unique, like an elongated triangular pyramid has f=(1,7,12,7,1)=(1,6,6,1)*(1,1), shared with a hexagonal pyramid, {6}∨( ), so face types also matter.
All convex polyhedra have f-vectors can be factored by (1,1), but don't represent a real pyramids.
Rank | Name | f-vector | Factorized | Joins |
---|---|---|---|---|
-1 | Nullitope | f=(1) | None | ∅∨∅ = ∅ |
0 | Point | f=(1,1) | (1,1) | ( )∨∅ = ∅∨( ) = ( ) |
1 | Segment | f=(1,2,1) | (1,1)2 | 2⋅( ) = ( )∨( ) = { } |
2 | Triangle | f=(1,3,3,1) | (1,1)3 | 3⋅( ) = ( )∨( )∨( ) = {3} |
3 | Tetrahedron | f=(1,4,6,4,1) | (1,1)4 | 4⋅( ) = ( )∨( )∨( )∨( ) = {3,3} |
3 | Triangular pyramid | (1,3,3,1)*(1,1) | {3}∨( ) = {3,3} | |
3 | Digonal disphenoid | (1,2,1)2 | 2⋅{ } = { }∨{ } | |
4 | 5-cell | f=(1,5,10,10,5,1) | (1,1)5 | 5⋅( ) = ( )∨( )∨( )∨( )∨( ) = {3,3,3} |
4 | Tetrahedral pyramid | f=(1,5,10,10,5,1) | (1,4,6,4,1)*(1,1) | {3,3}∨( ) = {3,3,3} |
5 | 5-simplex | f=(1,6,15,20,15,6,1) | (1,1)6 | 6⋅( ) = ( )∨( )∨( )∨( )∨( )∨( ) = {3,3,3,3} |
5 | 5-cell pyramid | f=(1,6,15,20,15,6,1) | (1,5,10,10,5,1)*(1,1) | {3,3,3}∨( ) = {3,3,3,3} |
5 | Digonal trisphenoid | f=(1,6,15,20,15,6,1) | (1,2,1)3 | 3⋅{ } = { }∨{ }∨{ } = {3,3,3,3} |
6 | 6-simplex | f=(1,7,21,35,35,21,7,1) | (1,1)7 | 7⋅( ) = ( )∨( )∨( )∨( )∨( )∨( )∨( ) = {3,3,3,3,3} |
7 | 7-simplex | f=(1,8,28,56,70,56,28,8,1) | (1,1)8 | 8⋅( ) = ( )∨( )∨( )∨( )∨( )∨( )∨( )∨( ) = {3,3,3,3,3,3} |
7 | Digonal tetrasphenoid | f=(1,8,28,56,70,56,28,8,1) | (1,2,1)4 | 4⋅{ } = { }∨{ }∨{ }∨{ } = {3,3,3,3,3,3} |
4 | Cubic pyramid | f=(1,9,20,18,7,1) | (1,8,12,6,1)*(1,1) = |
{4,3}∨( ) |
4 | Octahedral pyramid | f=(1,7,18,20,9,1) | (1,6,12,8,1)*(1,1) = |
{3,4}∨( ) |
11 Johnson solids have f-vectors matching pyramids, while only the first two are real. This demonstrates f-vectors are insufficient from identifying joins. Toroidal polyhedra don't factorized at all.
# | Johnson solid | V | E | F | Matched pyramid f-vectors |
---|---|---|---|---|---|
J1 | Square pyramid | 5 | 8 | 5 | Square pyramid, {4}∨( ) |
J2 | Pentagonal pyramid | 6 | 10 | 6 | Pentagonal pyramid, {5}∨( ) |
J7 | Elongated triangular pyramid | 7 | 12 | 7 | hexagonal pyramid, {6}∨( ) |
J26 | Gyrobifastigium | 8 | 14 | 8 | Heptagonal pyramid, {7}∨( ) |
J8 | Elongated square pyramid | 9 | 16 | 9 | Octagonal pyramid, {8}∨( ) |
J64 | Augmented tridiminished icosahedron | 10 | 18 | 10 | Enneagonal pyramid, {9}∨( ) |
J9 | Elongated pentagonal pyramid | 11 | 20 | 11 | Decagonal pyramid, {10}∨( ) |
J55 | Parabiaugmented hexagonal prism | 14 | 26 | 14 | 13-gonal pyramid, {13}∨( ) |
J56 | Metabiaugmented hexagonal prism | 14 | 26 | 14 | 13-gonal pyramid, {13}∨( ) |
J91 | Bilunabirotunda | 14 | 26 | 14 | 13-gonal pyramid, {13}∨( ) |
Polytope-simplex di-wedges
editWedges of the form A∨( )∨( )∨...∨( ) = A∨n+1⋅( ) = A∨{3n-1}, as a join by a n-simplex.
We can represent as f-vectors as f(A∨n+1⋅( ))=f(A)*(1,1)n+1 .
This family of wedges has a special property like Pascal's triangle, where each new row has f-vector as neighboring sums of previous row f-vector, starting with A. A∨{ } will have f-vectors of sums, but 2 levels down, and A∨{3} is expressed as sums 3 levels down, A∨{3,3} sums 4 levels down, etc.
These polytopes are self-dual if A is self-dual, i.e. f-vectors are forward-reverse symmetric.
Multi-wedges with points have special names by Jonathan Bowers:[6] The names come from BSA names of simplices: 2D (scal), 3D:tet, 4D:pen, 5D:hix, 6D:hop, 7D:oca, 8D:ene, 9D: day, 10D: ux, with suffix -ene.[7]
Join | Name | Dim | Examples | |
---|---|---|---|---|
A∨( ) | A-ic pyramid | 3D | {4}∨( ) is a square pyramid | {3}∨( ) is a triangular pyramid, same as tetrahedron. |
A∨( )∨( ) = A∨{ } | A-ic scalene | 4D | {4}∨{ } is a square scalene | {3}∨{ } is a triangular scalene, same as 5-cell. |
A∨( )∨( )∨( ) = A∨{3} | A-ic tettene | 5D | {4}∨{3} is a square tettene | {3}∨{3} is a triangular tettene same as 5-simplex. |
A∨( )∨( )∨( )∨( ) = A∨{3,3} | A-ic pennene | 6D | {4}∨{3,3} is a square pennene | {3}∨{3,3} is a triangular pennene (or tetrahedral tettene), a 6-simplex. |
A∨( )∨( )∨( )∨( )∨( ) = A∨{3,3,3} | A-ic hixene | 7D | {4}∨{3,3,3} is a square hixene | {3}∨{3,3,3} is a triangular hixene (or 5-cell tettene), a 7-simplex. |
A∨{3,3,3,3} | A-ic hoppene | 8D | {4}∨{3,3,3,3} is a square hoppene | {3}∨{3,3,3,3} is a triangular hoppene (or 5-simplex tettene), a 8-simplex. |
A∨{3,3,3,3,3} | A-ic ocaene | 9D | {4}∨{3,3,3,3,3} is a square ocaene | {3}∨{3,3,3,3,3} is a triangular ocaene (or 6-simplex tettene), a 9-simplex. |
A∨{3,3,3,3,3,3} | A-ic eneene | 10D | {4}∨{3,3,3,3,3,3} is a square eneene | {3}∨{3,3,3,3,3,3} is a triangular eneene (or 7-simplex tettene), a 10-simplex. |
A∨{3,3,3,3,3,3,3} | A-ic dayene | 11D | ||
A∨{3,3,3,3,3,3,3,3} | A-ic uxene | 12D |
Multi-wedge altitudes
editJoining three or more polytopes allows multiple orthogonal altitudes. Explicit parentheses are needed to differentiate (A∨B)∨hC from A∨h(B∨C), with highest level join altitude being expressed, ∨h, with altitude h.
Multi-wedges can be evaluated in any order of evaluation, as long as the sum of the square of the circum-radius of the polytope elements are less than 1.
We can determine the counts by combinations, . And with multinomial theorem, it is generalized by for 3 partitions where n>a+b.
Altitude, h, case count for n-wedge by pairwise partitioning. If the partition sizes are equal, like 2+2 or 3+3, the combinations are cut in half.
n-wedge | Form | Combinations | Counts | ||
---|---|---|---|---|---|
di-wedge+ n≥2 |
A∨hB | n choose 2 | |||
tri-wedge+ n≥3 |
(A∨B)∨hC | n choose 2+1 | |||
tetra-wedge+ n≥4 |
(A∨B)∨h(C∨D) | n choose 2+2 | |||
(A∨B∨C)∨hD | n choose 3+1 | ||||
penta-wedge+ n≥5 |
(A∨B∨C)∨h(D∨E) | n choose 3+2 | |||
(A∨B∨C∨D)∨hE | n choose 4+1 | ||||
hexa-wedge+ n≥6 |
(A∨B∨C)∨h(D∨E∨F) | n choose 3+3 | |||
(A∨B∨C∨D)∨h(E∨F) | n choose 4+2 | ||||
(A∨B∨C∨D∨E)∨hF | n choose 5+1 |
A tri-wedge A∨B∨C has 6 altitudes: A∨B, A∨C, B∨C, (A∨B)∨C, (A∨C)∨B, and (B∨C)∨A.
For example, if A, B, and C are points, it makes a triangle. The first three altitudes correspond to the edge lengths of the triangle, and the next 3 correspond to the 3 altitudes of the triangle.
A tetra-wedge has 6 altitudes A∨B, 12 altitude of form (A∨B)∨C, 3 altitude of form (A∨B)∨(C∨D), and 4 altitudes of form (A∨B∨C)∨D.
For example, if all 4 polytopes are points, this corresponds to a tetrahedron, having with 6 edge lengths, 12 altitudes on the 4 triangular faces, 3 digonal disphenoid altitude of opposite edges, and 4 triangular pyramid altitudes.
Lists by dimension
edit1-dimensions
editPoint di-wedge
edit( )∨( ) is segment, { }, full symmetry [ ], order 2. f=(1,1)2=(1,2,1)
Construction | Name | BSA | f-vector | Verfs | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
( )∨( )= 2⋅( ) = { } |
Point di-wedge Segment |
- | (1,1)2 =(1,2,1) |
2: ( ) | ([1,0]) (±1) |
[1]+ = | 1 | Self-dual | Equilateral { } |
2-dimensions
editPoint tri-wedge
edit( )∨( )∨( ) is a general triangle, no symmetry. f-1...2=(1,3,3,1)=(1,1)3.
If the 3 points can be commuted the symmetry increases to an equilateral triangle. It can be seen with coordinates in 3D ([1,0,0]), coordinate permutations (1,0,0), (0,1,0), and (0,0,1).
Construction | Name | BSA | f-vector | Verf | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
( )∨( )∨( ) = 3⋅( ) | Point tri-wedge Triangle Equilateral triangle |
triang | (1,1)3 =(1,3,3,1) |
3: ( )∨( ) | ([1,0,0]) | [1,1]+ = [3,1] = |
1 6 |
Self-dual | Equilateral {3} |
Segment pyramid
edit{ }∨( ) can express an isosceles triangle, symmetry [ ], order 2. f=(1,3,3,1)=(1,1)3.
Construction | Name | BSA | f-vector | Verfs | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{ }∨( ) | Segment-point di-wedge isosceles triangle |
triang | (1,2,1)*(1,1) =(1,3,3,1) |
3: ( )∨( ) | ([1,0]), (0,0) | [1,1] = | 2 | Self-dual | Equilateral {3} h=√(3/4)=0.866 |
3-dimensions
editPoint tetra-wedge
edit( )∨( )∨( )∨( ) is a general tetrahedron, no symmetry implied. f-1...3=(1,4,6,4,1)=(1,1)4. If all four points can be permuted.
Interchanging the vertices with all permutations increases symmetry to the regular tetrahedron, {3,3}, order 4! = 24.
Construction | Name | BSA | f-vector | Verfs | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
( )∨( )∨( )∨( )= 4⋅( ) | Point tetra-wedge tetrahedron Regular tetrahedron |
tet | (1,1)4 =(1,4,6,4,1) |
4: ( )∨( )∨( ) | ([1,0,0,0]) | [1,1,1]+ = | 1 | Self-dual | Regular {3,3} |
Polygonal pyramid
editA polygonal-point di-wedge or p-gonal pyramid, {p}∨( ), symmetry [p,1], order 2p. f=(1,p,p,1)*(1,1)=(1,1+p,2p,1+p,1)
Construction | Name | BSA | f-vector | Verfs | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}∨( ) | Triangular pyramid = tetrahedron |
tet | (1,3,3,1)*(1,1) =(1,4,6,4,1) |
3: { }∨( ) 1: {3} |
([1,0,0]), (0,0,0) | [3,1] = | 6 | Self-dual | Equilateral {3,3} h=√(2/3)=0.8165 | |
{4}∨( ) | Square pyramid | squippy J1 |
(1,4,4,1)*(1,1) =(1,5,8,5,1) |
4: { }∨( ) 1: {4} |
(±1,±1,1), (0,0,0) | [4,1] = | 8 | Self-dual | Equilateral h=√(1/2) = 0.7071 | |
{5}∨( ) | Pentagonal pyramid | peppy J2 |
(1,5,5,1)*(1,1) =(1,6,10,6,1) |
5: { }∨( ) 1: {5} |
(x,y,1), (0,0,0) | [5,1] = | 10 | Self-dual | Equilateral h=√((3-√5)/8) = 0.3090 | |
{6}∨( ) | Hexagonal pyramid | Flat - |
(1,6,6,1)*(1,1) =(1,7,12,7,1) |
6: { }∨( ) 1: {6} |
([0,1,2]), (0,0,0) | [6,1] = | 12 | Self-dual | Equilateral only if degenerate h=0 | |
{p}∨( ) | p-gonal pyramid | Flat - |
(1,p,p,1)*(1,1) =(1,1+p,2p,1+p,1) |
p: { }∨( ) 1: {p} |
[p,1] = | 2p | Self-dual |
Segment di-wedge
editA digonal disphenoid or segment-segment di-wedge. f=(1,4,6,4,1)=(1,1)4.
Construction | name | BSA | f-vector | Verfs | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{ }∨{ } = 2⋅{ } | Segment di-wedge Digonal disphenoid |
tet | (1,2,1)2 =(1,4,6,4,1) |
4: { }∨( ) | (±1,0,-1), (0,±1,+1) | [2,1] = [[2],1]=[4,2+] |
4 8 |
Self-dual | Equilateral {3,3} h=1/√2 |
The symmetry can double to [4,2+], order 8, by mapping edges to each other by a rotoreflection.
4-dimensions
editPolyhedral pyramid
editIn 4-dimensions, a polyhedron-point di-wedge or a polyhedral pyramid is a 4-polytope with a polyhedron base and a point apex, written as a join, with a regular polyhedron, {p,q}∨( ), with symmetry [p,q,1]. It is self-dual.
If the polyhedron, {p,q}, has (v,e,f) vertices, edges, and faces, {p,q}∨( ) will have v+1 vertices, v+e edges, e+f faces, and f+1 cells. f=(1,v,e,f,1)*(1,1)=(1,v+1,v+e,e+f,f+1,1).
Construction | Name | BSA | f-vector | Verfs | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{ }∨{ }∨( ) = 5⋅( ) | Segment-segment-point tri-wedge Digonal disphenoid pyramid = 5-cell |
pen | (1,2,1)2*(1,1) =(1,1)5 =(1,5,10,10,5,1) |
{ }∨{ } { }∨( )∨( ) |
([1,0],0,0,-1),(0,0,[1,0],1), (0,0,0,0,0) |
[1,1,1]+ = | 4 | Self-dual | Equilateral {3,3,3} | |
{3,3}∨( ) | Tetrahedron-point di-wedge Tetrahedral pyramid = 5-cell |
(1,4,6,4,1)*(1,1) =(1,5,10,10,5,1) |
{3}∨( ) {3,3} |
([1,0,0,0],1), (0,0,0,0,0) | [3,3,1] = | 24 | Self-dual | Equilateral {3,3,3} | ||
{4,3}∨( ) | Cubic pyramid cubic pyramid |
cubpy K-4.26 |
(1,8,12,6,1)*(1,1) =(1,9,20,18,5,1) |
{3}∨( ) {4,3} |
(±1,±1,±1,1), (0,0,0,0) | [4,3,1] = | 96 | {3,4}∨( ) | Equilateral | |
{3,4}∨( ) | Octahedral pyramid Octahedral pyramid |
octpy K-4.3 |
(1,6,12,8,1)*(1,1) =(1,7,18,20,9,1) |
{4}∨( ) {3,4} |
([±1,0,0], 1), (0,0,0,0) | {4,3}∨( ) | Equilateral | |||
r{3,4}∨( ) | Cuboctahedral pyramid | (1,12,24,14,1)*(1,1) =(1,13,36,38,15,1) |
([±1,±1,0],1), (0,0,0,0) | r{3,4}∨( ) | Equilateral if flat h=0 | |||||
t{3,4}∨( ) | Truncated octahedral pyramid | - | (1,24,36,14,1)*(1,1) =(1,25,60,50,15,1) |
{ }∨( )∨( ) t{3,4} |
([0,1,2,3]), (0,0,0,0) | dtr{3,4}∨( ) | Not equilateral | |||
{5,3}∨( ) | Dodecahedral pyramid | - | (1,20,30,12,1)*(1,1) =(1,21,50,42,13,1) |
{5}∨( ) {5,3} |
(x,y,z,1), (0,0,0,0) | [5,3,1] = | 240 | {3,5}∨( ) | Not equilateral | |
{3,5}∨( ) | Icosahedral pyramid Icosahedral_pyramid |
ikepy K-4.84 |
(1,12,30,20,1)*(1,1) =(1,13,42,50,21,1) |
{5}∨( ) {3,5} |
(x,y,z,1), (0,0,0,0) | {5,3}∨( ) | Equilateral | |||
s{2,8}∨( ) | Square antiprism pyramid Square antiprismatic pyramid |
squappy K-4.17.1 |
(1,8,16,10,1)*(1,1) =(1,9,24,26,11,1) |
Equilateral | ||||||
s{2,10}∨( ) | pentagonal antiprism pyramid Pentagonal antiprismatic pyramid |
pappy K-4.80.1 |
(1,10,20,12,1)*(1,1) =(1,11,30,32,13,1) |
Equilateral | ||||||
J11∨( ) | Gyroelongated pentagonal pyramid pyramid | gyepippy K-4.85 |
(1,11,25,16,1)*(1,1) =(1,12,36,41,17,1) |
Equilateral | ||||||
J62∨( ) | Metabidiminished icosahedron pyramid | mibdipy K-4.87 |
(1,10,20,12,1)*(1,1) =(1,11,30,32,13,1) |
Equilateral | ||||||
J63∨( ) | Tridiminished icosahedron pyramid | teddipy K-4.88 |
(1,9,15,8,1)*(1,1) =(1,10,24,23,9,1) |
Equilateral |
Construction | Name | BSA | f-vector | Verf | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|
{3}×{ }∨( ) | Triangular prismatic pyramid Triangular_prismatic_pyramid |
trippy K-4.7 |
(1,6,9,5,1)*(1,1) =(1,7,15,14,6,1) |
{ }×{ }∨( ) | [3,2,1] = | 12 | ({3}+{ })∨( ) | Equilateral | |
{4}×{ }∨( ) = {4,3}∨( ) |
square prismatic pyramid = Cubic pyramid |
cubpy K-4.26 |
(1,8,12,6,1)*(1,1) =(1,9,20,18,7,1) |
{ }×{ }∨( ) {4}×{ } |
[4,2,1] = | 16 | ({4}+{ })∨( ) | Equilateral | |
{5}×{ }∨( ) | Pentagonal prismatic pyramid Pentagonal_prismatic_pyramid |
pippy K-4.141 |
(1,10,15,7,1)*(1,1) =(1,11,25,22,8,1) |
{ }×{ }∨( ) {5}×{ } |
[5,2,1] = | 20 | ({5}+{ })∨( ) | Equilateral | |
{6}×{ }∨( ) | Hexagonal prismatic pyramid | - | (1,12,18,8,1)*(1,1) =(1,13,30,26,9,1) |
{ }×{ }∨( ) {6}×{ } |
[6,2,1] = | 20 | ({6}+{ })∨( ) | Not equilateral | |
{p}×{ }∨( ) | p-gonal prismatic pyramid | - | (1,2p,3p,2+p,1)*(1,1) =(1,2p+1,5p,2+4p,3+p,1) |
{ }×{ }∨( ) {p}×{ } |
[p,2,1] = | 4p | ({p}+{ })∨( ) |
Polygon-segment di-wedge
editIn 4-dimensions, a polygon-segment di-wedge or polygonal pyramid pyramid is a 4-polytope with p-gonal base and a segment apex, written as a join, with a regular polygon, {p}∨{ }, with symmetry [p,2,1]. It is self-dual.
They can be drawn in perspective projection into the envelope of a p-gonal bipyramid, with an added edge down the bipyramid axis. {p}∨{ } has p+2 vertices, 1+3p edges, 1 p-gonal faces and 3p triangles, and 2 p-gonal pyramidal cells, and p tetrahedral cells. f=(1,p,p,1)*(1,1)2=(1,2+p,1+3p,1+3p,2+p,1)
The join can be equilateral for real altitude h=√(0.5-0.25/sin(π/p))>0.
Construction | Name | BSA | f-vector | Verfs | Facets | Coordinates | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
{3}∨{ } = {3}∨( )∨( ) |
Triangle-segment di-wedge Triangular pyramid pyramid Triangular scalene |
pen K-4.1.1 |
(1,3,3,1)*(1,1)2 =(1,5,10,10,5,1) |
3: { }∨{ } 2: {3}∨( ) |
3: { }∨{ } 2: {3}∨( ) |
([1,0,0],0,0), (0,0,0,[1,0]) | [3,1,1] = [3,2,1] = |
6 12 |
Self-dual | Equilateral {3,3,3} h=√(5/12) | |
{4}∨{ } = {4}∨( )∨( ) |
Square-segment di-wedge Square pyramid pyramid Square scalene |
squasc K-4.4 |
(1,4,4,1)*(1,1)2 =(1,6,13,13,6,1) |
4: { }∨{ } 2: {4}∨( ) |
4: { }∨{ } 2: {4}∨( ) |
(±1,±1,0,0), (0,0,[1,0]) | [4,1,1] = [4,2,1] = |
16 | Self-dual | Equilateral h=1/2 | |
{5}∨{ } = {5}∨( )∨( ) |
Pentagon-segment di-wedge Pentagonal pyramid pyramid Pentagonal scalene |
pesc K-4.86 |
(1,5,5,1)*(1,1)2 =(1,7,17,17,7,1) |
5: { }∨{ } 2: {5}∨( ) |
5: { }∨{ } 2: {5}∨( ) |
(x,y,0,0), (0,0,[1,0]) | [5,1,1] = [5,2,1] = |
20 | Self-dual | Equilateral h=0.026393202 | |
{6}∨{ } = {6}∨( )∨( ) |
Hexagon-segment di-wedge Hexagonal pyramid pyramid Hexagonal scalene |
- | (1,6,6,1)*(1,1)2 =(1,8,20,20,8,1) |
6: { }∨{ } 2: {6}∨( ) |
6: { }∨{ } 2: {6}∨( ) |
([0,1,2],0,0), (0,0,0,[1,0]) | [6,1,1] = [6,2,1] = |
24 | Self-dual | Not equilateral | |
{p}∨{ } = {p}∨( )∨( ) |
p-gon-segment di-wedge p-gonal pyramid pyramid p-gonal scalene |
- | (1,p,p,1)*(1,1)2 =(1,2+p,1+3p,1+3p,2+p,1) |
p: { }∨{ } 2: {p}∨( ) |
p: { }∨{ } 2: {p}∨( ) |
[p,1,1] = [p,2,1] = |
4p | Self-dual |
5-dimension
editSegment tri-wedge
edit{ }∨{ }∨{ } is a tri-wedge in 5-dimensions, a lower dimensional form of a 5-simplex. It is self-dual. f=(1,2,1)3=(1,1)6=(1,6,15,20,15,6,1)
It has symmetry [2,2,1,1], order 8. The symmetry order can increase by a factor of 6 by interchanging segments, [3[2,2],1,1] or [4,3,1,1], order 48.
Construction | name | BSA | f-vector | Verfs | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|
{ }∨{ }∨{ } = 3⋅{ } = 6⋅( ) | Segment tri-wedge = 5-simplex |
hix | (1,2,1)3 =(1,6,15,20,15,6,1) |
{ }∨{ }∨( ) | [2,2,1,1] = [3[2,2],1,1] = [4,3,1,1] = |
8 24 |
Self-dual | Equilateral {3,3,3,3} |
Polychoral pyramid
editIn 5-dimensions, a polychoron-point di-wedge or polychoral pyramid is a 5-polytope pyramid, with a polychoron base and a point apex, written as a join, with a regular polyhedron, {p,q,r}∨( ), with symmetry [p,q,r,1].
A polychoral pyramid with base f-vector=(v,e,f,c) will have new f-vector=(1,v,e,f,c,1)*(1,1)=(1+v,v+e,e+f,f+c,1+c).
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3,3}∨( ) | 5-cell pyramid | hix | (1,5,10,10,5,1)*(1,1) =(1,6,15,20,15,6,1) |
{3,3}∨( ) {3,3,3} |
1: {3,3,3} 5: {3,3}∨( ) |
[3,3,3,1] = | 120 | Self-dual | Equilateral {3,3,3,3} | |
r{3,3,3}∨( ) | Rectified 5-cell pyramid | rappy | (1,15,60,80,45,12,1)*(1,1) =(1,16,75,140,125,57,13,1) |
Equilateral | ||||||
{3,3,4}∨( ) | 16-cell pyramid | hexpy | (1,8,24,32,16,1)*(1,1) =(1,9,32,56,48,17,1) |
{3,4}∨( ) {3,3,4} |
1: {3,3,4} 16: {3,3}∨( ) |
[4,3,3,1] = | 384 | {4,3,3}∨( ) | Equilateral | |
{4,3,3}∨( ) | Tesseractic pyramid | - | (1,16,32,24,8,1)*(1,1) =(1,17,48,56,32,9,1) |
{4,3}∨( ) {4,3,3} |
1: {4,3,3} 16: {3,3}∨( ) |
{3,3,4}∨( ) | Not equilateral | |||
{3,4,3}∨( ) | 24-cell pyramid | - | (1,24,96,96,24,1)*(1,1) =(1,25,120,192,120,25,1) |
{4,3}∨( ) {3,4,3} |
1: {3,4,3} 24: {3,4}∨( ) |
[3,4,3,1] = | 1152 | Self-dual | Not equilateral | |
{3,3,5}∨( ) | 600-cell pyramid | - | (1,120,720,1200,600,1)*(1,1) =(1,121,840,1920,1800,601,1) |
{3,5}∨( ) {3,3,5} |
1: {3,3,5} 120: {3,3}∨( ) |
[5,3,3,1] = | 14400 | {5,3,3}∨( ) | Not equilateral | |
{5,3,3}∨( ) | 120-cell pyramid | - | (1,600,1200,720,120,1)*(1,1) =(1,601,1800,1920,840,121,1) |
{3,3}∨( ) {5,3,3} |
1: {5,3,3} 600: {5,3}∨( ) |
{3,3,5}∨( ) | Not equilateral |
Construction | Name | BSA | f-vector | Verf | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|
{3,3}×{ }∨( ) | Tetrahedral prismatic pyramid | tepepy | (1,8,16,14,6,1)*(1,1) =(1,9,24,30,20,7,1) |
{3}×{ }∨( ) {3,3}∨( ) {3,3}×{ } |
[3,3,2,1] = | 48 | Tetrahedral bipyramid pyramid | Equilateral | |
{4,3}×{ }∨( ) = {4,3,3}∨( ) |
Cubic prismatic pyramid = Tesseract pyramid |
- | (1,16,32,24,8,1)*(1,1) =(1,17,48,56,32,9,1) |
{3}×{ } {4,3}∨( ) {4,3}×{ } |
[4,3,2,1] = | 192 | ({3,4}+{ })∨( ) = 16-cell pyramid |
Not equilateral | |
{3,4}×{ }∨( ) r{3,3}×{ }∨( ) |
Octahedral prismatic pyramid | opepy | (1,12,30,16,10,1)*(1,1) =(1,13,42,46,26,11,1) |
{4}×{ }∨( ) {3,4}∨( ) {3,4}×{ } |
({4,3}+{ })∨( ) | Equilateral | |||
r{3,4}×{ }∨( ) | Cuboctahedral prismatic pyramid | - | (1,24,60,52,16,1)*(1,1) =(1,25,84,112,68,17,1) |
Not equilateral | |||||
{5,3}×{ }∨( ) | Dodecahedral prismatic pyramid | - | (1,40,80,54,14,1)*(1,1) =(1,41,120,134,68,15,1) |
{3}×{ }∨( ) {5,3}∨( ) {5,3}×{ } |
[5,3,2,1] = | 480 | ({3,5}+{ })∨( ) | Not equilateral | |
{3,5}×{ }∨( ) | Icosahedral prismatic pyramid | - | (1,24,72,70,22,1)*(1,1) =(1,25,96,142,92,23,1) |
{3,5}∨( ) {3,5}×{ } |
({5,3}+{ })∨( ) | Not equilateral |
Construction | Name | BSA | f-vector | Verf | Symmetry | Order | Dual | Notes | |
---|---|---|---|---|---|---|---|---|---|
{3}×{3}∨( ) | {3}×{3} | 3-3 duoprismatic pyramid | - | (1,9,18,15,6,1)*(1,1) =(1,7,27,24,21,7,1) |
{3}×{ }∨( ) { }×{3}∨( ) {3}×{3} |
[3,2,3,1] = | 36 | ({3}+{3})∨( ) | |
{3}×{4}∨( ) | {3}×{4} | 3-4 duoprismatic pyramid | - | (1,12,24,19,7,1)*(1,1) =(1,8,36,31,26,8,1) |
{3}×{ }∨( ) { }×{4}∨( ) {3}×{4} |
[3,2,4,1] = | 48 | ({3}+{4})∨( ) | |
{4}×{4}∨( ) | {4}×{4} | tesseractic pyramid | - | (1,16,32,24,8,1)*(1,1) =(1,9,48,40,32,9,1) |
{4}×{ }∨( ) { }×{4}∨( ) {4}×{4} |
[4,2,4,1] = | 64 | ({4}+{4})∨( ) | |
{p}×{q}∨( ) | {p}×{q} | p-q duoprismatic pyramid | - | (1,pq,2pq,pq+p+q,p+q,1)*(1,1) =(1,1+p+q,3pq,p+q+2pq,2p+2q+pq,1+p+q,1) |
{p}×{ }∨( ) { }×{q}∨( ) {p}×{q} |
[p,2,q,1] = | 4pq | p-q duopyramid pyramid | |
({p}+{q})∨( ) | {p}+{q} | p-q duopyramidal pyramid | - | (1,p+q,pq+p+q,2pq,pq,1)*(1,1) =(1,1+p+q,2p+2q+pq,p+q+2pq,3pq,1+p+q,1) |
{p}+{q}∨( ) { }+{q}∨( ) {p}+{ } |
p-q duoprismatic pyramid |
Polygon di-wedge
editIn 5-dimensions, a polygon di-wedge is a 5-polytope with a p-gonal base and a q-gonal base, written as a join, {p}∨{q}. It is self-dual. It has symmetry [p,2,q,1], order 4pq, double if p=q
{p}∨{q} has p+q vertices, p+q+pq edges, 2+2pq faces, and p+q+pq cells, and p+q hypercells. f-1...5=(1,p,p,1)*(1,q,q,1)=(1,p+q,p+q+pq,2+2pq,p+q+pq,p+q,1).
The join can be equilateral for real altitude h=√(1-0.25(1/sin(π/p)+1/sin(π/q))>0.
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}∨{3} = 2⋅{3}= 6⋅( ) | Triangle di-wedge = 5-simplex |
hix | (1,3,3,1)2 =(1,1)6 =(1,6,15,20,15,6,1) |
6: {3}∨{ } | 6: {3}∨{ } | [[3,2,3],1] | 2×36 | Self-dual | Equilateral {3,3,3,3} h=1/√3 | |
{3}∨{4} = {4}∨( )∨( )∨( ) |
Triangle-square di-wedge Square pyramid pyramid pyramid Square tettenes |
squete | (1,3,3,1)*(1,4,4,1) =(1,7,19,26,19,7,1) |
4: {3}∨{ } 3: { }∨{4} |
4: {3}∨{ } 3: { }∨{4} |
[3,2,4,1] | 48 | Self-dual | Equilateral h=1/√6 | |
{3}∨{5} = {5}∨( )∨( )∨( ) |
Triangle-pentagon di-wedge Pentagonal pyramid pyramid pyramid |
(1,3,3,1)*(1,5,5,1) =(1,8,23,32,23,8,1) |
5: {3}∨{ } 3: { }∨{5} |
5: {3}∨{ } 3: { }∨{5} |
[3,2,5,1] | 60 | Self-dual | Not equilateral | ||
{4}∨{4} = 2⋅{4} | Square di-wedge | Flat 4g=perp4g |
(1,4,4,1)2 =(1,8,24,34,24,8,1) |
8: {4}∨{ } | 8: {4}∨{ } | [[4,2,4],1] | 2×64 | Self-dual | Equilateral only if degenerate h=0 | |
{4}∨{5} | Square-pentagon di-wedge | - | (1,4,4,1)*(1,5,5,1) =(1,9,29,42,29,9,1) |
5: {4}∨{ } 4: { }∨{5} |
5: {4}∨{ } 4: { }∨{5} |
[4,2,5,1] | 80 | Self-dual | Not equilateral | |
{5}∨{5} = 2⋅{5} | Pentagon di-wedge | - | (1,5,5,1)2 =(1,10,35,52,35,10,1) |
10: {5}∨{ } | 10: {5}∨{ } | [[5,2,5],1] | 2×100 | Self-dual | Not equilateral | |
{3}∨{6} = {6}∨( )∨( )∨( ) |
Triangle-hexagon di-wedge Hexagonal pyramid pyramid pyramid Hexagonal tettenes |
- | (1,3,3,1)*(1,6,6,1) =(1,9,27,38,27,9,1) |
6: {3}∨{ } 3:{ }∨{6} |
6: {3}∨{ } 3: { }∨{6} |
[3,2,6,1] | 72 | Self-dual | Not equilateral | |
{4}∨{6} | Square-hexagon di-wedge | - | (1,4,4,1)*(1,6,6,1) =(1,10,34,50,34,10,1) |
6: {4}∨{ } 4: { }∨{6} |
6: {4}∨{ } 4: { }∨{6} |
[4,2,6,1] | 96 | Self-dual | Not equilateral | |
{5}∨{6} | Pentagon-hexagon di-wedge | - | (1,5,5,1)*(1,6,6,1) =(1,11,41,62,41,11,1) |
6: {5}∨{ } 5: { }∨{6} |
6: {5}∨{ } 5: { }∨{6} |
[5,2,6,1] | 120 | Self-dual | Not equilateral | |
{6}∨{6} = 2⋅{6} | Hexagon di-wedge | - | (1,6,6,1)2 =(1,12,48,74,48,12,1) |
12: {6}∨{ } | 12: {6}∨{ } | [[6,2,6],1] | 2×144 | Self-dual | Not equilateral | |
{p}∨{q} | p-q-gon di-wedge | - | (1,p,p,1)*(1,q,q,1) =(1,p+q,p+q+pq,2+2pq,p+q+pq,p+q,1) |
q: {p}∨{ } p: { }∨{q} |
q: {p}∨{ } p: { }∨{q} |
[p,2,q,1] | 4pq | Self-dual | ||
{p}∨{p} = 2⋅{p} | p-gon di-wedge | - | (1,p,p,1)2 =(1,2p,(2+p)p,2+2p2,(2+p)p,2p,1) |
2p: {p}∨{ } | 2p: {p}∨{ } | [[p,2,p],1] | 2×4p2 | Self-dual |
A vertex-edge graph for the pyramid can be drawn with a p+q vertex polygon, partitioning them into a p-gon, a q-gon, with one each between each vertex of the p-gon to a vertex of the q-gon.
Polyhedron-segment di-wedge
editA polyhedron-segment di-wedge, if regular as {p,q}∨{ } or {p,q}∨( )∨( ), is a join of a polyhedron and a segment, or a polyhedral pyramid pyramid in 5 dimensions. It has symmetry [p,q,2,1]. Its dual, if regular, is {q,p}∨{ }.
A {3,3}∨{ } is a lower symmetry 5-cell, symmetry [3,3,2,1], order 48.
If the polyhedron, {p,q}, has f=(v,e,f), then f({p,q}∨{ })=(v,e,f)*(1,1)2=(1,v+2,1+2v+e,v+2e+f,1+e+2f,2+f).
Construction | Name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3}∨{ } = {3,3}∨( )∨( ) |
Tetrahedron-segment di-wedge Tetrahedral pyramid pyramid Tetrahedral scalene |
hix | (1,4,6,4,1)*(1,1)2 =(1,6,15,20,15,6,1) |
4: {3}∨{ } 2: {3,3}∨( ) |
4: {3}∨{ } 2: {3,3}∨( ) |
[3,3,2,1] | 48 | Self-dual | Equilateral {3,3,3,3} | |
t{3,3}∨{ } = t{3,3}∨( )∨( ) |
Truncated tetrahedron-segment di-wedge Truncated tetrahedral pyramid pyramid Truncated tetrahedral scalene |
- | (1,8,18,12,1)*(1,1)2 =(1,10,35,56,43,14,1) |
[3,3,2,1] | 48 | Not equilateral | ||||
{3,4}∨{ } = {3,4}∨( )∨( ) |
Octahedron-segment di-wedge Octahedral pyramid pyramid Octahedral scalene |
octasc | (1,6,12,8,1)*(1,1)2 =(1,8,25,38,29,10,1) |
6: {4}∨{ } 2: {3,4}∨( ) |
8: {3}∨{ } 2: {3,4}∨( ) |
[4,3,2,1] | 96 | {4,3}∨{ } | Equilateral | |
{4,3}∨{ } = {4,3}∨( )∨( ) |
Cube-segment di-wedge Cubic pyramid pyramid Cubic scalene |
Flat cubasc |
(1,8,12,6,1)*(1,1)2 =(1,10,29,38,25,8,1) |
8: {3}∨{ } 2: {4,3}∨( ) |
6: {4}∨{ } 2: {4,3}∨( ) |
[4,3,2,1] | 96 | {3,4}∨{ } | Equilateral only if degenerate | |
t{4,3}∨{ } = t{4,3}∨( )∨( ) |
Truncated cube-segment di-wedge Truncated cubic pyramid pyramid Truncated cubic scalene |
- | (1,24,36,14,1)*(1,1)2 =(1,26,61,110,65,16,1) |
[4,3,2,1] | 96 | Not equilateral | ||||
t{3,4}∨{ } = t{3,4}∨( )∨( ) |
Truncated octahedron-segment di-wedge Truncated octahedral pyramid pyramid Truncated octahedral scalene |
- | (1,24,36,14,1)*(1,1)2 =(1,26,85,110,65,16,1) |
[4,3,2,1] | 96 | Not equilateral | ||||
r{3,4}∨{ } = r{3,4}∨( )∨( ) |
Cuboctahedron-segment di-wedge Cuboctahedral pyramid pyramid Cuboctahedral scalene |
- | (1,12,24,14,1)*(1,1)2 =(1,14,49,74,53,16,1) |
[4,3,2,1] | 96 | {4,3}∨{ } | Not equilateral | |||
rr{3,4}∨{ } = rr{3,4}∨( )∨( ) |
Rhombicuboctahedron-segment di-wedge Rhombicuboctahedral pyramid pyramid Rhombicuboctahedral scalene |
- | (1,26,48,24,1)*(1,1)2 =(1,28,101,146,97,26,1) |
[4,3,2,1] | 96 | Not equilateral | ||||
sr{3,4}∨{ } = sr{3,4}∨( )∨( ) |
Snub cube-segment di-wedge Rhombicuboctahedral pyramid pyramid Snub cube scalene |
- | (1,24,60,38,1)*(1,1)2 =(1,26,109,182,137,40,1) |
[(4,3)+,2,1] | 48 | Not equilateral | ||||
{3,5}∨{ } = {3,5}∨( )∨( ) |
Icosahedron-segment di-wedge Icosahedral pyramid pyramid Icosahedral scalene |
- | (1,12,30,20,1)*(1,1)2 =(1,14,55,92,71,22,1) |
12: {5}∨{ } 2: {3,5}∨( ) |
20: {3}∨{ } 2: {3,5}∨( ) |
[5,3,2,1] | 240 | {5,3}∨{ } | Not equilateral | |
{5,3}∨{ } = {5,3}∨( )∨( ) |
Dodecahedron-segment di-wedge Dodecahedral pyramid pyramid Dodecahedral scalene |
- | (1,20,30,12,1)*(1,1)2 =(1,22,71,92,55,14,1) |
20: {3}∨{ } 2: {5,3}∨( ) |
12: {5}∨{ } 2: {5,3}∨( ) |
[5,3,2,1] | 240 | {3,5}∨{ } | Not equilateral |
Construction | Name | BSA | f-vector | Verf | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|
{3}×{ }∨{ } {3}×{ }∨( )∨( ) |
Triangular prism-segment di-wedge Triangular prism scalene |
trippasc | (1,6,9,5,1)*(1,1)2 =(1,8,22,29,20,7,1) |
[3,2,2,1] = | 24 | ({3}+{ })∨{ } | Equilateral | ||
({3}+{ })∨{ } ({3}+{ })∨( )∨( ) |
Triangular bipyramid-segment di-wedge Triangular bipyramidal scalene |
- | (1,5,9,6,1)*(1,1)2 =(1,7,20,29,16,8,1) |
{3}×{ }∨{ } | Not equilateral | ||||
{4}×{ }∨{ } = {4,3}∨{ } |
Square prism-segment di-wedge = Cube-segment di-wedge square prism scalene |
Flat cubasc |
(1,6,12,8,1)*(1,1)2 =(1,10,29,38,25,8,1) |
[4,2,2,1] = | 32 | ({4}+{ })∨{ } | Equilateral only if degenerate | ||
({4}+{ })∨{ } = {3,4}∨{ } |
square bipyramid-segment di-wedge = Octahedron-segment di-wedge square bipyramid scalene |
octasc | (1,8,12,6,1)*(1,1)2 =(1,8,25,38,21,10,2) |
{4}×{ }∨{ } | Equilateral | ||||
{5}×{ }∨{ } {5}×{ }∨( )∨( ) |
Pentagonal prism-segment di-wedge Pentagonal prism scalene |
- | (1,10,15,7,1)*(1,1)2 =(1,12,26,47,30,9,1) |
[5,2,2,1] = | 40 | ({5}+{ })∨{ } | Not equilateral | ||
({5}+{ })∨{ } | Pentagonal bipyramid-segment di-wedge Pentagonal bipyramidal scalene |
- | (1,7,15,10,1)*(1,1)2 =(1,9,30,47,26,12,1) |
{5}×{ }∨{ } | Not equilateral | ||||
{6}×{ }∨{ } {6}×{ }∨( )∨( ) |
Hexagonal prism-segment di-wedge Hexagonal prism scalene |
- | (1,12,18,8,1)*(1,1)2 =(1,14,31,56,35,10,1) |
[6,2,2,1] = | 48 | ({6}+{ })∨{ } | Not equilateral | ||
({6}+{ })∨{ } | Hexagonal bipyramid-segment di-wedge Hexagonal bipyramidal scalene |
- | (1,8,18,12,1)*(1,1)2 =(1,10,35,56,31,14,1) |
{6}×{ }∨{ } | Not equilateral | ||||
{p}×{ }∨{ } {p}×{ }∨( )∨( ) |
p-gonal prism-segment di-wedge p-gonal prismatic scalene |
- | (1,2p,3p,2+p,1)*(1,1)2 =(1,2+2p,1+5p,2+9p,5+5p,4+p,1) |
[p,2,2,1] = | 8p | ({p}+{ })∨{ } | |||
({p}+{ })∨{ } | p-gonal bipyramid-segment di-wedge p-gonal bipyramidal scalene |
- | (1,2+p,3p,2p,1)*(1,1)2 =(1,4+p,5+5p,2+9p,1+5p,2+2p,1) |
{p}×{ }∨{ } |
6-dimension
editSegment-segment-segment-point tetra-wedge
editConstruction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{ }∨{ }∨{ }∨( ) = 7⋅( ) | Segment-segment-segment-point tetra-wedge | hop | (1,2,1)3*(1,1) =(1,1)7 =(1,7,21,35,35,21,7,1) |
[2,2,2,2,1] = | 8 | Self-dual | Equilateral 6-simplex |
Polygon-segment-segment tri-wedge
editConstruction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}∨{3,3} {3}∨{ }∨{ } {3}∨( )∨( )∨( )∨( ) |
triangle-tetrahedron di-wedge triangle-segment-segment tri-wedge Triangle pennene |
hop | (1,3,3,1)*(1,1)4 =(1,3,3,1)*(1,2,1)2 =(1,7,21,35,35,21,7,1) |
[3,2,2,2,1] = | 48 | Self-dual | Equilateral {3,3,3,3,3} | |||
{4}∨{3,3} {4}∨{ }∨{ } {4}∨( )∨( )∨( )∨( ) |
square-tetrahedron di-wedge square-segment-segment tri-wedge Square pennene |
squepe | (1,4,4,1)*(1,1)4 =(1,4,4,1)*(1,2,1)2 =(1,8,26,45,45,26,8,1) |
[4,2,2,2,1] = | 64 | Self-dual | Equilateral | |||
{5}∨{3,3} {5}∨{ }∨{ } {5}∨( )∨( )∨( )∨( ) |
Pentagon-tetrahedron di-wedge Pentagon-segment-segment tri-wedge Pentagon pennene |
- | (1,5,5,1)*(1,1)4 =(1,5,5,1)*(1,2,1)2 =(1,9,31,55,55,31,9,1) |
[5,2,2,2,1] = | 80 | Self-dual | Not equilateral | |||
{6}∨{3,3} {6}∨{ }∨{ } {6}∨( )∨( )∨( )∨( ) |
Hexagon-tetrahedron di-wedge Hexagon-segment-segment tri-wedge Hexagon pennene |
- | (1,6,6,1)*(1,1)4 =(1,6,6,1)*(1,2,1)2 =(1,10,36,65,65,36,10,1) |
[6,2,2,2,1] = | 96 | Self-dual | Not equilateral | |||
{p}∨{3,3} {p}∨{ }∨{ } {p}∨( )∨( )∨( )∨( ) |
p-gon-tetrahedron di-wedge p-gon-segment-segment tri-wedge p-gon pennene |
- | (1,p,p,1)*(1,1)4 =(1,p,p,1)*(1,2,1)2 =(1,p,p,1)*(1,2,1)2 |
[p,2,2,2,1] = | 16p | Self-dual |
Polyteron pyramid
editIn 6-dimensions, a polyteron-point di-wedge or polyteric pyramid is a 6-polytope pyramid, with a polyteron base and a point apex, written as a join, with a regular polyteron, {p,q,r,s}∨( ), with symmetry [p,q,r,s,1].
A polyteral pyramid with base f-vector=(v,e,f,c,h) will have new f-vector=(1,v,e,f,c,h,1)*(1,1)=(1+v,v+e,e+f,f+c,c+h,1+h).
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3,3,3}∨( ) | 5-simplex pyramid | hop | (1,6,15,20,15,6,1)*(1,1) =(1,7,21,35,35,21,7,1) |
[3,3,3,3,1] = | 120 | Self-dual | Equilateral {3,3,3,3,3} | |||
r{3,3,3,3}∨( ) | rectified 5-simplex pyramid | rixpy | (1,10,30,30,10,1)*(1,1) =(1,11,40,60,40,11,1) |
Equilateral | ||||||
2r{3,3,3,3}∨( ) | birectified 5-simplex pyramid | dotpy | (1,20,90,120,60,12,1)*(1,1) =(1,21,110,210,180,72,13,1) |
Equilateral | ||||||
{3,3,3,4}∨( ) | 5-orthoplex pyramid | tacpy | (1,10,40,80,80,32,1)*(1,1) =(1,11,50,120,160,112,33,1) |
[4,3,3,3,1] = | 3840 | {4,3,3,3}∨( ) | Equilateral | |||
{4,3,3,3}∨( ) | Penteractic pyramid | - | (1,32,80,80,40,10,1)*(1,1) =(1,33,112,160,120,50,11,1) |
{3,3,3,4}∨( ) | Not equilateral | |||||
h{4,3,3,3}∨( ) | Demipenteractic pyramid | hinpy | (1,16,80,160,120,26,1)*(1,1) =(1,17,96,240,280,146,27,1) |
[3,3,31,1,1] = | 3840 | Equilateral |
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3,3}×{ }∨( ) | 5-cell prism pyramid | penppy | (1,10,25,30,20,7,1)*(1,1) =(1,11,35,55,50,27,8,1) |
[3,3,3,2,1] = | 240 | ({3,3,3}+{ })∨( ) | Equilateral | |||
r{3,3,3}×{ }∨( ) | Rectified 5-cell prism pyramid | rappip∨( ) rappippy |
(1,10,25,30,20,7,1)*(1,1) =(1,11,35,55,50,27,8,1) |
Equilateral | ||||||
{3,3,4}×{ }∨( ) | 16-cell prism pyramid | hexippy | (1,16,56,88,64,18,1)*(1,1) =(1,17,72,144,152,82,19,1) |
[4,3,3,2,1] = | 768 | ({4,3,3}+{ })∨( ) | Equilateral | |||
{4,3,3}×{ }∨( ) | 5-cube pyramid | - | (1,10,40,80,80,32,1)*(1,1) =(1,11,50,120,160,112,33,1) |
({3,3,4}+{ })∨( ) | Not equilateral | |||||
{3,4,3}×{ }∨( ) | 24-cell prism pyramid | - | (1,26,144,288,216,48,1)*(1,1) =(1,27,170,432,504,264,49,1) |
[3,4,3,2,1] = | 2304 | ({3,4,3}+{ })∨( ) | Not equilateral | |||
{3,3,5}×{ }∨( ) | 600-cell prism pyramid | - | (1,602,2400,3120,1560,240,1)*(1,1) =(1,603,3002,5520,4680,1800,241,1) |
[5,3,3,2,1] = | 28800 | ({5,3,3}+{ })∨( ) | Not equilateral | |||
{5,3,3}×{ }∨( ) | 120-cell prism pyramid | - | (1,122,960,2640,3000,1200,1)*(1,1) =(1,123,1082,3600,5640,4200,1201,1) |
({3,3,5}+{ })∨( ) | Not equilateral |
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3}×{3}∨( ) | tetrahedron-triangle duoprism pyramid | tratetpy | (1,12,30,34,21,7,1)*(1,1) =(1,13,42,64,55,28,8,1) |
[3,3,2,3,1] = | 144 | (({3,3}+{3})∨{ }) | Equilateral | |||
{3,3}×{4}∨( ) | tetrahedron-square duoprism pyramid | squatet∨( ) squatetpy |
(1,16,40,44,26,8,1)*(1,1) =(1,17,56,84,70,34,9,1) |
[3,3,2,4,1] = | 192 | (({3,3}+{4})∨{ }) | Equilateral | |||
{3,3}×{p}∨( ) | tetrahedron-p-gon duoprism pyramid | - | [3,3,2,p,1] = | 48p | (({3,3}+{p})∨{ }) | |||||
{3,4}×{3}∨( ) | Octahedron-triangle duoprism pyramid | troctpy | (1,18,54,66,39,11,1)*(1,1) =(1,19,72,120,105,50,12,1) |
[4,3,2,3,1] = | 288 | ({4,3}+{3})∨{ } | Equilateral | |||
{3,4}×{4}∨( ) | octahedron-square duoprism pyramid | Flat squoct∨( ) squoctpy |
(1,16,40,44,26,8,1)*(1,1) =(1,17,56,84,34,9,1) |
[4,3,2,4,1] = | 384 | ({4,3}+{4})∨{ } | ||||
{3,4}×{p}∨( ) | octahedron-p-gon duoprism pyramid | - | [4,3,2,p,1] = | 96p | ({4,3}+{p})∨{ } | Equilateral if flat h==0 | ||||
{4,3}×{3}∨( ) | Cube-triangle duoprism pyramid | - | [4,3,2,3,1] = | 96*3 | ({3,4}+{3})∨( ) | Not equilateral | ||||
{4,3}×{4}∨( ) | Cube-square duoprism pyramid | - | [4,3,2,4,1] = | 96*4 | ({3,4}+{4})∨( ) | Not equilateral | ||||
{4,3}×{p}∨( ) | Cube-p-gon duoprism pyramid | - | [4,3,2,p,1] = | 96p | ({3,4}+{p})∨( ) | Not equilateral | ||||
{3,5}×{3}∨( ) | icosahedron-triangle duoprism pyramid | - | [5,3,2,3,1] = | 360 | ({5,3}+{3})∨( ) | Not equilateral | ||||
{5,3}×{3}∨( ) | dodecahedron-triangle duoprism pyramid | - | ({3,5}+{3})∨( ) | Not equilateral | ||||||
{3,5}×{4}∨( ) | icosahedron-square duoprism pyramid | - | [5,3,2,4,1] = | 480 | ({5,3}+{4})∨( ) | Not equilateral | ||||
{5,3}×{4}∨( ) | dodecahedron-square duoprism pyramid | - | ({3,5}+{4})∨( ) | Not equilateral | ||||||
{3,5}×{p}∨( ) | icosahedron-p-gon duoprism pyramid | - | [5,3,2,p,1] = | 120p | ({5,3}+{p})∨( ) | Not equilateral | ||||
{5,3}×{p}∨( ) | dodecahedron-p-gon duoprism pyramid | - | ({3,5}+{p})∨( ) | Not equilateral |
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}×{3}×{ }∨( ) | 3-3 duoprism prism pyramid | tratrip∨( ) tratrippy |
(1,18,45,48,27,8,1)*(1,1) =(1,19,63,93,75,35,9,1) |
[3,2,3,2,1] = | 72 | ({3}+{3}+{ })∨( ) | Equilateral! | |||
{3}×{4}×{ }∨( ) | 3-4 duoprism prism pyramid | tracube∨( ) tracubepy |
(1,24,60,62,33,9,1)*(1,1) =(1,25,84,122,95,42,10,1) |
[3,2,4,2,1] = | 96 | ({3}+{4}+{ })∨( ) | Not equilateral | |||
{4}×{4}×{ }∨( ) | 5-cube pyramid | - | (1,32,80,80,40,10,1)*(1,1) =(1,33,112,160,120,50,11,1) |
[4,2,4,2,1] = | 128 | ({4}+{4}+{ })∨( ) | Not equilateral | |||
{p}×{q}×{ }∨( ) | p-q duoprism prism pyramid | - | [p,2,q,2,1] = | 8pq | ({p}+{q}+{ })∨( ) |
A polygon-polygon di-wedge pyramid, {p}∨{q}∨( ), has f-vector (1,p,p,1)*(1,q,q,1)*(1,1)=(1,1+p+q,2p+2q+pq+2+p+q+3pq,2+p+q+3pq+2p+2q+pq,1+p+q,1).
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}∨{3}∨( ) | triangle di-wedge pyramid | hop | (1,3,3,1)2*(1,1) =(1,7,21,35,35,21,7,1) |
[[3,2,3],1,1] = | 72 | Self-dual | Equilateral {3,3,3,3,3} | |||
{3}∨{4}∨( ) | triangle-square di-wedge pyramid | squete∨( ) squetepy |
(1,3,3,1)*(1,4,4,1)*(1,1) =(1,8,26,45,26,8,1) |
[3,2,4,1,1] = | 48 | Self-dual | Equilateral | |||
{4}∨{4}∨( ) | square di-wedge pyramid | Flat 4g=perp4g∨( ) |
(1,4,4,1)2*(1,1) =(1,9,32,58,32,9,1) |
[[4,2,4],1,1] = | 128 | Self-dual | Equilateral only if degenerate | |||
{p}∨{p}∨( ) | p-gon di-wedge pyramid | - | (1,p,p,1)2*(1,1) | [[p,2,p],1,1] = | 8p2 | Self-dual | ||||
{p}∨{q}∨( ) | Polygon-polygon di-wedge pyramid | - | (1,p,p,1)*(1,q,q,1)*(1,1) | [p,2,q,1,1] = | 4pq | Self-dual |
Polychoron-segment di-wedge
editConstruction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3,3}∨{ } | 5-cell-segment di-wedge 5-cell scalene |
hop | (1,5,10,10,5,1)*(1,1)2 =(1,1)5 =(1,7,21,35,35,21,7,1) |
[3,3,3,2,1] = | 240 | Self-dual | Equilateral {3,3,3,3,3} | |||
r{3,3,3}∨{ } | Rectified 5-cell-segment di-wedge Rectified 5-cell scalene |
rapesc | (1,10,30,30,10,1)*(1,1)2 =(1,12,51,100,100, 51,12,1) |
Equilateral | ||||||
{3,3,4}∨{ } | 16-cell-segment di-wedge 16-cell scalene |
hexasc | (1,8,24,32,16,1)*(1,1)2 =(1,10,41,88,104,65,18,1) |
[4,3,3,2,1] = | 768 | {4,3,3}∨{ } | Equilateral | |||
{4,3,3}∨{ } | Tesseract-segment di-wedge Tesseract scalene |
- | (1,16,32,24,8,1)*(1,1)2 =(1,18,65,104,88,91,10,1) |
{3,4,3}∨{ } | Not equilateral | |||||
{3,4,3}∨{ } | 24-cell-segment di-wedge 24-cell scalene |
- | (1,24,96,96,24,1)*(1,1)2 =(1,26,145,312,312,150,26,1) |
[3,4,3,2,1] = | 2304 | Self-dual | Not equilateral | |||
{3,3,5}∨{ } | 600-cell-segment di-wedge 600-cell scalene |
- | (1,120,720,1200,600,1)*(1,1)2 =(1,122,961,2760,3720,2401,602,1) |
[5,3,3,2,1] = | 28800 | {5,3,3}∨{ } | Not equilateral | |||
{5,3,3}∨{ } | 120-cell-segment di-wedge 120-cell scalene |
- | (1,600,1200,720,120,1)*(1,1)2 =(1,602,2401,3720,2760,961,122,1) |
{3,3,5}∨{ } | Not equilateral |
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3}×{ }∨{ } | Tetrahedral prism-segment di-wedge Tetrahedral-prismatic scalene |
tepasc | (1,8,16,14,6,1)*(1,1)2 =(1,10,33,54,50,27,8,1) |
[3,3,2,2,1] = | 96 | (({3,3}+{ })∨{ }) | Equilateral | |||
{3,4}×{ }∨{ } | Octahedral prism-segment di-wedge Octahedral-prismatic scalene |
opepy∨( ) opesc |
(1,12,30,28,10,1)*(1,1)2 =(1,14,55,100,96,49,12,1) |
[4,3,2,2,1] = | 192 | ({4,3}+{ })∨{ } | Equilateral if degenerate h=0 | |||
{4,3}×{ }∨{ } ={4,3,3}∨{ } |
Tesseract-segment di-wedge Cubic-prismatic scalene |
- | (1,16,32,24,8,1)*(1,1)2 =(1,18,65,104,88,41,10,1) |
({3,4}+{ })∨{ } | Not equilateral | |||||
{3,5}×{ }∨{ } | Icosahedral prism-segment di-wedge Icosahedral-prismatic scalene |
- | (1,24,72,70,22,1)*(1,1)2 =(1,26,121,238,234,115,24,1) |
[5,3,2,2,1] = | 480 | ({5,3}+{ })∨{ } | Not equilateral | |||
{5,3}×{ }∨{ } | Dodecahedral prism-segment di-wedge Dodecahedral-prismatic scalene |
- | (1,22,70,72,24,1)*(1,1)2 =(1,24,115,234,238,121,26,1) |
({3,5}+{ })∨{ } | Not equilateral |
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}×{3}∨{ } | 3-3 duoprism-segment di-wedge 3-3 duoprism scalene |
triddipasc | (1,9,18,15,6,1)*(1,1)2 =(1,11,37,60,54,28,8,1) |
[3,2,3,2,1] = | 72 | ({3}+{3})∨{ } | Equilateral | |||
{3}×{4}∨{ } | 3-4 duoprism-segment di-wedge 3-4 duoprism scalene |
Flat tisdippy∨( ) tisdipasc |
(1,12,24,19,7,1)*(1,1)2 =(1,14,49,79,69,34,9,1) |
[3,2,4,2,1] = | 96 | ({3}+{4})∨{ } | Equilateral if degenerate | |||
{4}×{4}∨{ } | Tesseract-segment di-wedge Tesseract duoprism scalene |
- | (1,16,32,24,8,1)*(1,1)2 =(1,18,65,104,88,41,10,1) |
[4,2,4,2,1] = | 128 | ({4}+{4})∨{ } | Not equilateral | |||
{p}×{q}∨{ } | p-q duoprism-segment di-wedge p-q duoprism scalene |
- | (1,pq,2pq,p+q+pq,p+q,1)*(1,1)2 | [p,2,q,2,1] = | 8pq | ({p}+{q})∨{ } |
Polyhedron-polygon di-wedge
editConstruction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3,3}∨{3} {3,3}∨( )∨( )∨( ) |
tetrahedron di-wedge tetrahedral tettenes triangle pennene |
hop | (1,4,6,4,1)*(1,3,3,1) =(1,7,21,35,35,21,7,1) |
[3,3,2,3,1] = | 144 | Self-dual | Equilateral | |||
{3,3}∨{4} | tetrahedron-square di-wedge square pennene |
squepe | (1,4,6,4,1)*(1,4,4,1) =(1,8,26,45,45,26,8,1) |
[3,3,2,4,1] = | 192 | Self-dual | Equilateral | |||
{3,3}∨{5} | tetrahedron-pentagon di-wedge pentagon pennene |
(1,4,6,4,1)*(1,5,5,1) =(1,9,31,55,55,31,9,1) |
[3,3,2,5,1] = | 240 | Self-dual | Not equilateral | ||||
{3,3}∨{6} | tetrahedron-hexagon di-wedge hexagon pennene |
(1,4,6,4,1)*(1,6,6,1) =(1,10,36,65,65,36,10,1) |
[3,3,2,6,1] = | 288 | Self-dual | Not equilateral | ||||
{3,3}∨{p} | tetrahedron-p-gon di-wedge p-gon pennene |
trip∨{p} | (1,4,6,4,1)*(1,p,p,1) | [3,3,2,p,1] = | 48p | Self-dual | ||||
{3,4}∨{3} {3,4}∨( )∨( )∨( ) |
octahedron-triangle di-wedge octahedral tettenes |
octepe | (1,6,12,8,1)*(1,3,3,1) =(1,9,33,63,67,39,11,1) |
[4,3,2,3,1] = | 288 | {4,3}∨{3} | Equilateral | |||
{4,3}∨{3} {4,3}∨( )∨( )∨( ) |
Cube-triangle di-wedge cubic tettenes |
(1,8,12,6,1)*(1,3,3,1) =(1,11,39,67,63,33,9,1) |
{3,4}∨{3} | Not equilateral | ||||||
{3,4}∨{4} | octahedron-square di-wedge | oct∨{4} | (1,6,12,8,1)*(1,4,4,1) =(1,10,40,81,87,48,12,1) |
[4,3,2,4,1] = | 384 | {4,3}∨{4} | Not equilateral | |||
{4,3}∨{4} | Cube-square di-wedge | (1,8,12,6,1)*(1,4,4,1) =(1,12,48,87,81,40,10,1) |
{3,4}∨{4} | Not equilateral | ||||||
{3,4}∨{p} | octahedron-p-gon di-wedge | oct∨{p} | (1,6,12,8,1)*(1,p,p,1) | [4,3,2,p,1] = | 96p | {4,3}∨{p} | ||||
{4,3}∨{p} | Cube-p-gon di-wedge | oct∨{p} | (1,8,12,6,1)*(1,p,p,1) | {3,4}∨{p} | Not equilateral | |||||
{3,5}∨{p} | icosahedron-p-gon di-wedge | ike∨{p} | (1,12,30,20,1)*(1,p,p,1) | [5,3,2,p,1] = | 120p | {5,3}∨{p} | Not equilateral | |||
{5,3}∨{p} | dodecahedron-p-gon di-wedge | doe∨{p} | (1,20,30,12,1)*(1,p,p,1) | {3,5}∨{p} | Not equilateral |
A polygonal-prism-polygon di-wedge, {p}×{ }∨{q},has f-vector as (1,2p,3p,2+p,1)*(1,q,q,1)=(1,2p+q,3p+q+2pq,3+p+5pq,1+2p+2q+4pq,1+5p+q,3+p,1).
Construction | name | BSA | f-vector | Verfs | Facets | Image | Symmetry | Order | Dual | Notes |
---|---|---|---|---|---|---|---|---|---|---|
{3}×{ }∨{3} | triangular prism-triangle di-wedge triangular prism tettenes |
trippete | (1,6,9,5,1)*(1,3,3,1) =(1,9,30,51,49,27,8,1) |
[3,2,2,3,1] = | 72 | ({3}+{ })∨{3} | Equilateral | |||
{3}×{ }∨{4} | triangular prism-square di-wedge | trip∨{4} | (1,6,9,5,1)*(1,4,4,1) =(1,10,37,66,63,33,9,1) |
[3,2,2,4,1] = | 96 | ({3}+{ })∨{4} | Not equilateral | |||
{3}×{ }∨{5} | triangular prism-pentagon di-wedge | trip∨{5} | (1,6,9,5,1)*(1,5,5,1) =(1,11,44,81,77,39,10,1) |
[3,2,2,5,1] = | 120 | ({3}+{ })∨{5} | Not equilateral | |||
{3}×{ }∨{6} | triangular prism-hexagon di-wedge | trip∨{6} | (1,6,9,5,1)*(1,6,6,1) =(1,12,51,96,91,45,11,1) |
[3,2,2,6,1] = | 144 | ({3}+{ })∨{6} | Not equilateral | |||
{4}×{ }∨{3} ={4,3}∨{3} |
cube-triangle di-wedge cubic tettenes |
cubasc∨( ) | (1,8,12,6,1)*(1,3,3,1) =(1,11,39,67,63,24,7,1) |
[4,2,2,3,1] = | 96 | ({4}+{ })∨{3} | Not equilateral | |||
{4}×{ }∨{4} ={4,3}∨{4} |
cube-square di-wedge | cube∨{4} | (1,8,12,6,1)*(1,4,4,1) =(1,12,48,67,81,25,1) |
[4,2,2,4,1] = | 128 | ({4}+{ })∨{4} | Not equilateral | |||
{4}×{ }∨{5} ={4,3}∨{5} |
cube-pentagon di-wedge | cube∨{5} | (1,8,12,6,1)*(1,5,5,1) =(1,13,57,107,99,47,11,1) |
[4,2,2,5,1] = | 160 | ({4}+{ })∨{5} | Not equilateral | |||
{4}×{ }∨{6} ={4,3}∨{6} |
cube-hexagon di-wedge | cube∨{6} | (1,8,12,6,1)*(1,6,6,1) =(1,14,66,127,117,54,12,1) |
[4,2,2,6,1] = | 192 | ({4}+{ })∨{6} | Not equilateral | |||
{5}×{ }∨{3} | pentagonal prism-triangle di-wedge pentagonal prismatic tettenes |
- | (1,10,15,7,1)*(1,3,3,1) =(1,13,48,83,77,39,10,1) |
[5,2,2,3,1] = | 120 | ({5}+{ })∨{3} | Not equilateral | |||
{5}×{ }∨{4} | pentagonal prism-square di-wedge | - | (1,10,15,7,1)*(1,4,4,1) =(1,14,59,108,99,47,11,1) |
[5,2,2,4,1] = | 160 | ({5}+{ })∨{4} | Not equilateral | |||
{5}×{ }∨{5} | pentagonal prism-pentagon di-wedge | - | (1,10,15,7,1)*(1,5,5,1) =(1,15,70,133,121,55,12,1) |
[5,2,2,5,1] = | 200 | ({5}+{ })∨{5} | Not equilateral | |||
{5}×{ }∨{6} | pentagonal prism-hexagon di-wedge | - | (1,10,15,7,1)*(1,6,6,1) =(1,16,81,158,143,63,13,1) |
[5,2,2,6,1] = | 240 | ({5}+{ })∨{6} | Not equilateral | |||
{6}×{ }∨{3} | hexagonal prism-triangle di-wedge hexagonal prismatic tettenes |
- | (1,12,18,8,1)*(1,3,3,1) =(1,15,57,99,91,45,11,1) |
[6,2,2,3,1] = | 144 | ({6}+{ })∨{3} | Not equilateral | |||
{6}×{ }∨{4} | hexagonal prism-square di-wedge | - | (1,12,18,8,1)*(1,4,4,1) =(1,16,70,129,117,54,12,1) |
[6,2,2,4,1] = | 192 | ({6}+{ })∨{4} | Not equilateral | |||
{6}×{ }∨{5} | hexagonal prism-pentagon di-wedge | - | (1,12,18,8,1)*(1,5,5,1) =(1,17,83,159,143,63,13,1) |
[6,2,2,5,1] = | 240 | ({6}+{ })∨{5} | Not equilateral | |||
{6}×{ }∨{6} | hexagonal prism-hexagon di-wedge | - | (1,12,18,8,1)*(1,6,6,1) =(1,18,96,189,169,72,14,1) |
[6,2,2,6,1] = | 288 | ({6}+{ })∨{6} | Not equilateral | |||
{p}×{ }∨{q} | p-gonal prism-q-gon di-wedge | - | (1,2p,3p,2+p,1)*(1,q,q,1) | [p,2,2,q,1] = | 8pq | ({p}+{ })∨{q} |
Equilateral multi-wedges
editA join, A∨B, is equilateral if:
- A and B are both uniform, and if circumradii, r, of A and B are both less edge length by adjusting the join altitude and relative sizes of A and B.
- May also be a CRF polytope, a convex regular-faced polytope, and Convex segmentotopes[9] for pyramids.
The altitude of an equilateral join can be computed by h=√(1-r2
A-r2
B). The specific altitude can be given with the join symbol as A∨hB.
An altitude h=0 becomes geometric degenerate, but topologically fine. For instance an equilateral hexagonal pyramid, {6}∨( ), can be seen as a polyhedron in 2D with a regular hexagon connected to a central point. The 6 equilateral lateral triangle faces coincide with the hexagonal base.
Circumradii
editRegular, and single ringed uniform polyhedra have all vertices on a single n-sphere. This radius is called the circumradii, given for a polytope with unit edge length.
Polygon
editFor regular p-gon has rp=1/[2sin(π/p)]
{ } | {3} | {4} | {5} | {6} | |
---|---|---|---|---|---|
r | 1/2 =0.5000 |
√(1/3) =0.5773 |
√(1/2) =0.7071 |
√((5+√5)/10) =0.8506 |
1 |
Polyhedra
editFor regular and uniform polyhedra:
{3,3} tet |
{3,4} oct |
{4,3} cube |
{3,5} ike |
s{2,8} squap |
s{2,10} pap |
{3}×{ } trip |
{5}×{ } ipe |
r{3,4} co |
t{3,3} tut |
{5,3} doe | |
---|---|---|---|---|---|---|---|---|---|---|---|
Image | |||||||||||
r | √(3/8) =0.6124 |
√(1/2) =0.7071 |
√(3/4) =0.8660 |
√((5+√5)/8) =0.9511 |
√((4+√2)/8) =0.8227 |
√((5+√5)/8) =0.9511 |
√(7/12) =0.7638 |
√((15+2√5)/20) =0.9867 |
1 | √(11/8) =1.1726 |
√((9+3√5)/8) =1.4013 |
Polychora
editFor regular and uniform polychora:
{3,3,3} pen |
r{3,3,3} rap |
{3,3,4} hex |
{3,3}×{ } tepe |
{3,4}×{ } ope |
{3}×{3} triddip |
{3}×{4} tisdip |
{4,3,3} tes {4,3}×{ } {4}×{4} |
{3,4,3} ico r{3,3,4} |
{3,3,5} ex |
{5,3,3} hi | |
---|---|---|---|---|---|---|---|---|---|---|---|
Image | |||||||||||
r | √(2/5) =0.6325 |
√(3/5) =0.7746 |
√(1/2) =0.7071 |
√(5/8) =0.7906 |
√(3/4) =0.8660 |
√(2/3) =0.8165 |
√(5/6) =0.9129 |
1 | 1 | (1+√5)/2 =1.6180 |
√(7+3√5) =3.7025 |
5-polytope
editFor regular and uniform 5-polytopes:
{3,3,3,3} hix |
r{3,3,3,3} rix |
2r{3,3,3,3} dot |
{3,3,3,4} tac |
h{4,3,3,3} hin |
{3,3,3}×{ } penp |
{3,3,4}×{ } hexip |
{3}×{3}×{ } tratrip |
{3,3}×{3} tratet |
{3,3}×{4} squatet |
{3,4}×{3} troct |
r{3,3,3}×{ } rappip |
{3,4}×{4} squoct |
{4,3}×{3} tracube {4}×{3}×{ } |
{4,3,3,3} pent {4,3,3}×{ } {4,3}×{4} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Image | |||||||||||||||
r | √(5/12) =0.6455 |
√(2/3) =0.8165 |
√(3/4) =0.8660 |
√(1/2) =0.7071 |
√(5/8) =0.7906 |
√(13/20) =0.8062 |
√(3/4) =0.8660 |
√(11/12) =0.9574 |
√(17/24) =0.8416 |
√(7/8) =0.9354 |
√(5/6) =0.9129 |
√(17/20) =0.9220 |
1 | √(13/12) =1.0408 |
√(5/4) =1.1180 |
Equilateral solutions by dimension
edit1 dimension
editClass | Pyramid |
---|---|
Form | ( )∨( ) |
Image | |
r1,2 | r1=0 r2=0 |
h | 1 |
2 dimensions
editClass | Pyramid |
---|---|
Form | { }∨( ) ={3} |
Image | |
r1,2 | r1=1/2 r2=0 |
h | √(3/4) |
3 dimensions
editClass | Pyramids | Scalene | ||
---|---|---|---|---|
Form | {3}∨( ) tet ={3,3} |
{4}∨( ) squippy |
{5}∨( ) peppy |
{ }∨{ } tet ={3,3} |
Image | ||||
r1,2 | r1=√(1/3) r2=0 |
r1=√(1/2) r2=0 |
r1=√((5+√5)/10) r2=0 |
r1=1/2 r2=1/2 |
h | √(2/3) | √(1/2) | √((5-√5)/10) | √(1/2) |
4 dimensions
editForm | {3,3}∨( ) pen ={3,3,3} |
{4,3}∨( ) cubpy |
{3,4}∨( ) octpy |
s{2,8}∨( ) squappy |
{3}×{ }∨( ) trippy |
{4}×{ }∨( ) cubpy |
{5}×{ }∨( ) pippy |
---|---|---|---|---|---|---|---|
Images | |||||||
r1,2 | r1=√(3/8) r2=0 |
r1=√(3/4) r2=0 |
r1=√(1/2) r2=0 |
r1=√((4+√2)/8) r2=0 |
r1=√(7/12) r2=0 |
r1=√(3/4) r2=0 |
r1=√((7+√5)/8) r2=0 |
h | √(5/8) | √(1/4) | √(1/2) | √((4-√2)/8) | √(5/12) | √(1/4) | √((1-√5)/8) |
Form | {3,5}∨( ) ikepy |
s{2,10}∨( ) pappy |
J11∨( ) gyepip∨( ) gyepippy |
J62∨( ) mibdipy |
J63∨( ) teddipy |
---|---|---|---|---|---|
Images | |||||
r1,2 | r1=√((5+√5)/8) r2=0 |
r1=√((5+√5)/8) r2=0 |
r1=√((5+√5)/8) r2=0 |
r1=√((5+√5)/8) r2=0 |
r1=√((5+√5)/8) r2=0 |
h | √((3-√5)/8) | √((3-√5)/8) | √((3-√5)/8) | √((3-√5)/8) | √((3-√5)/8) |
Form | {3}∨{ } pen ={3,3,3} |
{4}∨{ } squippypy |
{5}∨{ } peppypy |
---|---|---|---|
Images | |||
r1,2 | r1=√(1/3) r2=1/2 |
r1=√(1/2) r2=1/2 |
r1=√((5+√5)/10) r2=1/2 |
h | √(1/12) | 1/2 | √((5-2√5)/20) |
5 dimensions
editClass | Pyramids | Scalenes | Tettenes | ||||||
---|---|---|---|---|---|---|---|---|---|
Form | {3,3,3}∨( ) hix = {3,3,3,3} |
r{3,3,3}∨( ) rappy |
{3,3,4}∨( ) hexpy |
{3,3}×{ }∨( ) tepepy |
{3,4}×{ }∨( ) opepy |
{3,3}∨{ } hix = {3,3,3,3} |
{3}×{ }∨{ } trippasc |
{3}∨{3} hix = {3,3,3,3} |
{4}∨{3} squete |
Images | |||||||||
r1,2 | r1=√(2/5) r2=0 |
r1=√(3/5) r2=0 |
r1=√(1/2) r2=0 |
r1=√(5/8) r2=0 |
r1=√(3/4) r2=0 |
r1=√(3/8) r2=1/2 |
r1=√(7/12) r2=1/2 |
r1=√(1/3) r2=√(1/3) |
r1=√(1/2) r2=√(1/3) |
h | √(3/5) | √(2/5) | √(1/2) | √(3/8) | √(1/4) | √(3/8) |
6 dimensions
editForm | {3,3,3,3}∨( ) hop {3,3,3,3,3} |
r{3,3,3,3}∨( ) rixpy |
2r{3,3,3,3}∨( ) dotpy |
{3,3,3,4}∨( ) tacpy |
{3,3,3}×{ }∨( ) penppy |
r{3,3,3}×{ }∨( ) rappip |
{3,3,4}×{ }∨( ) hexippy |
{3,3}×{3}∨( ) tratetpy |
[{3,3}×{4}]∨( ) squatet |
{3,4}×{3}∨( ) troctpy |
[{3}×{3}×{ }]∨( ) tratrip |
({3}∨{3})∨( ) hop {3,3,3,3,3} |
({3}∨{4})∨( ) squete |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Images | |||||||||||||
r1,2 | r1= r2=0 |
r1= r2=0 |
r1= r2=0 |
r1= r2=0 |
r1= r2=0 |
r1= r2=0 |
r1= r2= |
r1= r2= |
r1= r2= |
r1= r2= |
r1= r2= |
r1= r2= |
r1= r2= |
h |
Class | Scalenes | Tettenes | Pennenes | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Form | {3,3,3}∨{ } hop {3,3,3,3,3} |
r{3,3,3}∨{ } rapesc |
{3,3,4}∨{ } hexasc |
{3,3}×{ }∨{ } tepasc |
{3,4}×{ }∨{ } opepy |
{3}×{3}∨{ } triddipasc |
{3,3}∨{3} hop {3,3,3,3,3} |
{3,4}∨{3} octepe |
{3}×{ }∨{3} trippete |
{3,3}∨{4} squepe |
Images | ||||||||||
r1,2 | r1= r2=1/2 |
r1= r2=1/2 |
r1= r2=1/2 |
r1= r2=1/2 |
r1= r2=1/2 |
r1= r2=1/2 |
r1= r2= |
r1= r2= |
r1= r2= |
r1= r2= |
h |
References
edit- ^ Coxeter, H. S. M. (1973), Regular Polytopes (3rd ed.), Dover Publications, p. 15, ISBN 0-486-61480-8
- ^ Pyramid_product
- ^ a b c Geometries and TransformationNorman Johnson, 2018, 11.3 Pyramids, Prisms, and Antiprisms, p.163
- ^ a b c d Products of abstract polytopes Ian Gleason and Isabel Hubard, 2016
- ^ a b c d https://bendwavy.org/klitzing/explain/product.htm
- ^ https://bendwavy.org/klitzing/explain/axials.htm#pyramid
- ^ https://bendwavy.org/klitzing/explain/product.htm#simplex
- ^ https://polytope.miraheze.org/wiki/Square_tettene
- ^ https://bendwavy.org/klitzing/explain/axials.htm
- Different Products, occuring with Polytopes, pyramid product
- Polytope Names and Constructions Wendy Krieger
See also
edit- Join and meet - similar but unrelated operations