The Cuche Formation (Spanish: Formación Cuche, Cc) is a geological formation of the Floresta Massif, Altiplano Cundiboyacense in the Eastern Ranges of the Colombian Andes. The sequence of siltstones, shales, and sandstone beds dates to the Late Devonian and Early Carboniferous periods, and has a maximum thickness of 900 metres (3,000 ft).

Cuche Formation
Stratigraphic range: Frasnian-Early Carboniferous
~385–355 Ma
TypeGeological formation
Unit ofFloresta Massif
UnderliesGirón Fm., Tibasosa Fm.
OverliesFloresta Formation
Area~36 km2 (14 sq mi)
Thickness300–900 m (980–2,950 ft)
Lithology
PrimarySandstone, siltstone
OtherShale
Location
Coordinates5°51′37.2″N 72°56′57.6″W / 5.860333°N 72.949333°W / 5.860333; -72.949333
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forVereda Cuche
Named byBotero
LocationFloresta
Year defined1950
Coordinates5°51′37.2″N 72°56′57.6″W / 5.860333°N 72.949333°W / 5.860333; -72.949333
Approximate paleocoordinates51°42′S 48°06′W / 51.7°S 48.1°W / -51.7; -48.1
RegionBoyacá
Country Colombia

Paleogeography of the Middle Devonian
380 Ma, by Stampfli & Borel
Contrasting with the original coastal depositional environment, the Cuche Formation is found at altitudes of more than 2,500 metres (8,200 ft) in the Eastern Colombian Andes around Floresta, Boyacá

The formation was deposited in a tidal-dominated deltaic environment at high southern paleolatitudes at the edge of the Paleozoic Paleo-Tethys Ocean. The Cuche Formation is highly fossiliferous; many Placoderm fish fossils, flora, bivalves, arthropods, crustaceans and ostracods have been discovered in the youngest Paleozoic strate of the Floresta Massif, while the underlying Floresta Formation is richer in trilobite biodiversity.[1]

Etymology

edit

The formation was first described as part of the Floresta Series by Olsson and Carter in 1939. The current definition was given by Botero in 1950.[2] The formation is named after the vereda Cuche of Floresta, Boyacá, where the formation outcrops.[3] The word Cuche is taken from Muysccubun, the language of the indigenous Muisca, who inhabited the Altiplano Cundiboyacense before the Spanish conquest.[4]

Regional setting

edit

The Floresta Massif is a block in the northern part of the Altiplano Cundiboyacense, marked by a metamorphic crystalline core overlain by Devonian to Carboniferous sedimentary sequences; from old to young, the El Tíbet, Floresta and Cuche Formations. The Paleozoic succession is overlain by sediments of much younger date; the Late Jurassic Girón and Early Cretaceous Tibasosa Formations. The massif is bound to the east by the Soapaga Fault and to the west by the Boyacá Fault.[5]

At time of deposition of the Devonian formations, present-day northern South America was located at the edge of the Paleo-Tethys Ocean on the southern hemisphere. The Paleozoic occurrence on the Altiplano is localized in outcrop; the majority of surface sediments are Cretaceous to Paleogene in age. Neogene uplift of the Eastern Ranges, with its main phase in the Plio-Pleistocene, caused the exhumation of older units at surface along major thrust faults in the Eastern Andes. In two phases during the Paleozoic, intrusions occurred into the sedimentary sequence, causing local metamorphism. The first phase is considered pre-Devonian and the latter phase post-Devonian. The remaining stratigraphy of the Cuche Formation appears little affected by this intrusive phase,[6] although slight metamorphism has been identified in later research.[7]

Description

edit

Lithologies

edit

The Cuche Formation is characterised by mostly cream and purple coloured shales, with a basal unit of micaceous siltstones with intercalated yellowish-grey shales and 30 metres (98 ft) thick quartzitic and feldspar-rich sandstone beds that colour red caused by meteoric waters. The sandstones have an iron-rich cementation.[3] A middle unit of fine-grained sandstones with thin banks of siltstones follows the lower part and an upper sequence of shales with interbedded ferruginous red beds.[2] The lower sequence contains runzelmark syn-sedimentary structures.[3]

Stratigraphy and depositional environment

edit
 
The depositional environment of the Cuche Formation has been analysed to be a low-energy tidal-dominated deltaic setting, with frequent marine incursions into continental and lagoonal areas marked by the presence of both the flora and the many fish species found in the formation

The Cuche Formation in some places discordantly and in other areas transitionally defined by colour changes,[8][9] overlies the Floresta Formation in Boyacá and the Mogotes Formation in Santander,[10] and is, by an angular unconformity up to 60 degrees,[11] overlain by the Upper Jurassic Girón,[12] and Early Cretaceous Tibasosa Formations.[3] The angular unconformity between the Paleozoic and Mesozoic is exposed along the road between Duitama and Sogamoso, and is the location where the first flora fossils were found in 1978.[11]

The age of the Cuche Formation has been estimated to be Late Devonian to Early Carboniferous,[2][13] after an original designation as Permian-Carboniferous by Botero in 1950, further restricted to the Carboniferous by Julivert in 1968.[14] The formation covers an area of approximately 36 square kilometres (14 sq mi) and ranges in thickness between 300 and 900 metres (980 and 2,950 ft).[2] Stratigraphically, the Cuche Formation is time equivalent with the Diamante Formation of the Santander Massif to the north of the Altiplano Cundiboyacense.[15] To the west of Paz de Río, the Cuche Formation is thrusted upon the Neogene Concentración Formation by the Soapaga Fault.[16] In the northern part of the Floresta Massif, the contact between the metamorphic Otengá Stock and the Cuche Formation is formed by the Duga Fault.[17]

Based on the preservation of fossils, the lithologies, syn-sedimentary structures and stratigraphic position, a depositional environment of shallow low energy waters has been proposed, possibly in a lagoonal setting at the edge of a regressional Paleo-Tethys Ocean.[1][18] Other parts of the Cuche Formation were deposited in a continental environment, evidenced by the red beds and absence of marine fossils and abundant root imprints.[19] Overall, the sequence represents a coastal deltaic environment with frequent marine incursions, a tidal deltaic setting.[20][21]

Fossil content

edit
 
Fossil flora from the Cuche Formation were identified as "Ginkgo-like" species, as this Baiera reconstruction. Proper Ginkgo do not appear in the geological record until the Middle Permian

The first identification of fossil content of the Cuche Formation was done by Botero, who studied the formation in 1950. Research in the early 1980s revealed the presence of many more fossils in the formation and among the first fossil flora found were species then identified as the genera Ginkgo and Baiera.[14] The lower units show poorly preserved plant remains and the overlying shales provided arthropods and crustaceans. In the middle units of the formation, more and better preserved plant fossils were found alongside bivalves, ostracods (of the genus Welleria) and arthropods.[22]

The Cuche Formation contains unique Placoderm fish fossils, first noted by Mojica and Villarroel in 1984.[23] Across the section, also plant fossils and bivalves are found. In this part of the sequence the first fish fossils were discovered. The top section provided brachiopods (genus Lingula) and other at that moment undetermined fossil fragments.[24]

Later research has provided more insight into the flora of the formation, with the "Ginkgo" species possibly a Ginkgophyton sp..[25] Additionally, fossil flora of Colpodexylon cf. deatsii and cf. Archaeopteris sp. have been described from the formation.[26] In the continental sandstone facies of the Cuche Formation, ichnofossils of Diplichnites have been described.[27]

Fishes

edit
Antarctilamna (Gondwanan)
Bothriolepis (Euramerican)
Holoptychius (Euramerican)
The fossil assemblage of the Cuche Formation is unique in the mixture of typical Euramerican (Laurussian) and Gondwanan fish and flora species.

A closer paleogeographical relation between the paleocontinents has been suggested to explain this curious combination.

Remains of the cartilaginous fish Antarctilamna sp., the Placoderms Asterolepis sp. and two species of Bothriolepis,[28] the spiny shark ?Cheiracanthoides sp., the Porolepiform Holoptychius sp., and the Rhizodontid ?Strepsodus sp. have been uncovered from the Cuche Formation.[23] Several other fossils are less well recognizable at the genus level, among others Actinopterygii, Sarcopterygii,[29] and Osteolepiformes.[30] The fish specimens were found in sediments possibly representing localized transgressive marine incursions into brackish lagoonal settings,[20][31] in all cases associated with the presence of bivalves, ostracods and brachiopods.[32]

The fossil fish assemblage of the Cuche Formation presents a curious mixture of Euramerican "Old Red Sandstone" (Catskills, Greenland, Scotland and the Baltic states)[20] species (Asterolepis and Holoptychius), and Gondwanan taxa (Antarctilamna), suggesting the interchange of species between the paleogeographical regions, possibly at closer distance than is presented in most paleogeographical models.[33][34] This hypothesis is further strengthened by the discovery of typical Euramerican flora, as Archaeopteris.[26]

Asterolepis has been known only from Euramerican fossils, except for a specimen found in Iran.[20] The fish of the Cuche Formation are quite different from Bolivian Devonian fossils, with the exception of Antarctilamna. The similar sediments of the Colpacucho Formation in Bolivia have not provided the species discovered in the Cuche Formation, probably because of the cooler climate of the Devonian Bolivian seas more to the south than the paleogeographical position of northern Colombia (already around 51°S) at that time.[34]

Fossils assigned to Florestacanthus cf. morenoi, Colombiaspis rinconensis and Colombialepis villarroeli were later described from the Cuche Formation.[35][36][37]

Eurypterids

edit

In 2019, fragments of the eurypterid Pterygotus were retrieved from the formation. The find represents the first sea scorpion from Colombia and the fourth from South America.[38] The specimen (SGC-MGJRG.2018.I.5), assigned with uncertainty to P. bolivianus due to similarities with its holotype, represents the first eurypterid of Colombia and the fourth of South America. The fossil was dated as Frasnian (Late Devonian), showing that Pterygotus did not become extinct during the Middle Devonian as previously thought.[39]

Outcrops

edit
 
 
Type locality of the Cuche Formation in the north of the Altiplano Cundiboyacense

The Cuche Formation is found at the Floresta Massif around its type locality in Floresta, Boyacá, stretching across Floresta to the west close to Belén and Paz de Río,[2][40] up to north of Tibasosa in the valley of the Chicamocha River.[41]

Regional correlations

edit
Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
 
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
 
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[42][43][44][45]
2.6 Pliocene
 
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [44][46]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [45][47]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [46][45]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
 
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [43][46]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [43][46][48]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[48]
35 Late Eocene
 
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [45][49]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
 
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[45][49]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [42][43][46][45][50]
65 Maastrichtian
 
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [42][45]
72 Campanian End of rifting Colón-Mito Juan [45][51]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [42][45][52]
93 Cenomanian
 
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [46][52]
113 Aptian
 
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [43][45][53]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [42]
129 Hauterivian
 
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [42]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [43][54]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [46][55]
150 Early-Mid Jurassic
 
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[56]
201 Late Triassic
 
Mucuchachi Payandé [46]
235 Early Triassic
 
Pangea hiatus "Paleozoic"
250 Permian
 
300 Late Carboniferous
 
Famatinian orogeny Cerro Neiva
()
[57]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
 
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[54][58][59][60][61]
390 Early Devonian
 
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
 
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[62][63][64]
488 Late Cambrian
 
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[65][66]
515 Early Cambrian Cambrian explosion [64][67]
542 Ediacaran
 
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [68][69]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [65]
800
 
Snowball Earth [70]
1000 Mesoproterozoic
 
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[71][72][73][74]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[75]
1400
 
pre-Bucaramanga [76]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [77]
1800
 
Tapajós orogeny Mitú
(1800)
[75][77]
1950 Transamazonic orogeny pre-Mitú [75]
2200 Columbia
2530 Archean
 
Carajas-Imataca orogeny [75]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also

edit
  Geology of the Eastern Hills
  Geology of the Ocetá Páramo
  Geology of the Altiplano Cundiboyacense
  Bogotá, Cerrejón, Paja Formations, Honda Group

Notes

edit
  1. ^ based on Duarte et al. (2019)[78], García González et al. (2009),[79] and geological report of Villavicencio[80]
  2. ^ based on Duarte et al. (2019)[78] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[81]

References

edit
  1. ^ a b Morzadec et al., 2015, p.331
  2. ^ a b c d e Rodríguez & Solano, 2000, p.57
  3. ^ a b c d Mojica & Villarroel, 1984, p.65
  4. ^ Giraldo Gallego, 2014
  5. ^ Mojica & Villarroel, 1984, p.60
  6. ^ Mojica & Villarroel, 1984, p.63
  7. ^ Geoestudios, 2006, p.68
  8. ^ Rodríguez & Solano, 2000, p.58
  9. ^ Mojica & Villarroel, 1984, p.67
  10. ^ Rodríguez Gutiérrez, 2017, p.75
  11. ^ a b Mojica & Villarroel, 1984, p.68
  12. ^ Rodríguez & Solano, 2000, p.41
  13. ^ Villarroel & Mojica, 1985, p.85
  14. ^ a b Mojica & Villarroel, 1984, p.71
  15. ^ Villafañez Cardona, 2012, p.39
  16. ^ Geoestudios, 2006, p.14
  17. ^ Geoestudios, 2006, p.202
  18. ^ Mojica & Villarroel, 1984, p.75
  19. ^ Giroud López, 2014, p.146
  20. ^ a b c d Janvier & Villarroel, 2000, p.756
  21. ^ Giroud López, 2014, p.147
  22. ^ Mojica & Villarroel, 1984, p.72
  23. ^ a b Janvier & Villarroel, 2000, p.729
  24. ^ Mojica & Villarroel, 1984, p.66
  25. ^ Mojica & Villarroel, 1984, p.74
  26. ^ a b Berry et al., 2000
  27. ^ Gómez Cruz et al., 2015
  28. ^ Janvier & Villarroel, 1998, p.7
  29. ^ Janvier & Villarroel, 1998, p.11
  30. ^ Janvier & Villarroel, 1998, p.12
  31. ^ Janvier & Villarroel, 1998, p.9
  32. ^ Janvier & Villarroel, 1998, p.14
  33. ^ Janvier & Villarroel, 1998, p.15
  34. ^ a b Janvier & Villarroel, 2000, p.757
  35. ^ Olive et al., 2019, p.4
  36. ^ Olive et al., 2019, p.6
  37. ^ Olive et al., 2019, p.8
  38. ^ Olive et al., 2019, p.17
  39. ^ Olive et al., 2019, p.13
  40. ^ Plancha 172, 1998
  41. ^ Pardo Díaz et al., 2014, p.55
  42. ^ a b c d e f García González et al., 2009, p.27
  43. ^ a b c d e f García González et al., 2009, p.50
  44. ^ a b García González et al., 2009, p.85
  45. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  46. ^ a b c d e f g h Barrero et al., 2007, p.58
  47. ^ Plancha 111, 2001, p.29
  48. ^ a b Plancha 177, 2015, p.39
  49. ^ a b Plancha 111, 2001, p.26
  50. ^ Plancha 111, 2001, p.24
  51. ^ Plancha 111, 2001, p.23
  52. ^ a b Pulido & Gómez, 2001, p.32
  53. ^ Pulido & Gómez, 2001, p.30
  54. ^ a b Pulido & Gómez, 2001, pp.21-26
  55. ^ Pulido & Gómez, 2001, p.28
  56. ^ Correa Martínez et al., 2019, p.49
  57. ^ Plancha 303, 2002, p.27
  58. ^ Terraza et al., 2008, p.22
  59. ^ Plancha 229, 2015, pp.46-55
  60. ^ Plancha 303, 2002, p.26
  61. ^ Moreno Sánchez et al., 2009, p.53
  62. ^ Mantilla Figueroa et al., 2015, p.43
  63. ^ Manosalva Sánchez et al., 2017, p.84
  64. ^ a b Plancha 303, 2002, p.24
  65. ^ a b Mantilla Figueroa et al., 2015, p.42
  66. ^ Arango Mejía et al., 2012, p.25
  67. ^ Plancha 350, 2011, p.49
  68. ^ Pulido & Gómez, 2001, pp.17-21
  69. ^ Plancha 111, 2001, p.13
  70. ^ Plancha 303, 2002, p.23
  71. ^ Plancha 348, 2015, p.38
  72. ^ Planchas 367-414, 2003, p.35
  73. ^ Toro Toro et al., 2014, p.22
  74. ^ Plancha 303, 2002, p.21
  75. ^ a b c d Bonilla et al., 2016, p.19
  76. ^ Gómez Tapias et al., 2015, p.209
  77. ^ a b Bonilla et al., 2016, p.22
  78. ^ a b Duarte et al., 2019
  79. ^ García González et al., 2009
  80. ^ Pulido & Gómez, 2001
  81. ^ García González et al., 2009, p.60

Bibliography

edit

Geology

edit
  • Geoestudios; ANH (2006), Cartografía geológica cuenca Cordillera Oriental - Sector Soapaga (PDF), ANH, pp. 1–239, retrieved 2017-05-05
  • Giraldo Gallego, Diana Andrea (2014), "Antropónimos muiscas en la Colonia (1608-1650)", Forma y Función, 27 (2): 41–94, doi:10.15446/fyf.v27n2.47666, retrieved 2017-05-05
  • Mojica, Jairo; Villarroel, Carlos (1984), "Contribución al conocimiento de las unidades paleozoicas del área de Floresta (Cordillera Oriental Colombiana; Departamento de Boyacá) y en especial al de la Formación Cuche" (PDF), Geología Colombiana, 13: 55–80, retrieved 2017-05-05
  • Pardo Díaz, Marta Yolima; Gil Padilla, Marta Liliana; Garavito Rincón, Laura Natalia; Corredor Vargas, Pedro; Gutiérrez Barrios, Carolina; Parra, Wilson; Amaya Pedraza, Nancy (2014), Estudios técnicos, económicos, sociales y ambientales Complejo de Páramos Altiplano Cundiboyacense, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt & CORPOBOYACÁ, pp. 1–546
  • Rodríguez Gutiérrez, Madeleidy (2017), Criterios de Análisis y Validación del Comportamiento de los Túneles con Squeezing en Rocas, Escuela Colombiana de Ingeniería Julio Garavito, pp. 1–541
  • Rodríguez Parra, Antonio José; Solano Silva, Orlando (2000), Mapa Geológico del Departamento de Boyacá - 1:250,000 - Memoria explicativa, INGEOMINAS, pp. 1–120
  • Villafañez Cardona, Yohana (2012), Análisis de procedencia de areniscas cuarzosas del Devónico-Carbonífero de la Formación Floresta (Norte de Santander): Consideraciones paleogeográficas regionales, EAFIT, pp. 1–89

Paleontology

edit

Maps

edit
edit