Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2017.

List of years in paleontology (table)
In paleobotany
2014
2015
2016
2017
2018
2019
2020
In arthropod paleontology
2014
2015
2016
2017
2018
2019
2020
In paleoentomology
2014
2015
2016
2017
2018
2019
2020
In paleomalacology
2014
2015
2016
2017
2018
2019
2020
In paleoichthyology
2014
2015
2016
2017
2018
2019
2020
In reptile paleontology
2014
2015
2016
2017
2018
2019
2020
In archosaur paleontology
2014
2015
2016
2017
2018
2019
2020
In mammal paleontology
2014
2015
2016
2017
2018
2019
2020
Important taxa described (but not necessarily validly named) in 2017

Flora

edit

Cnidarians

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acanthophyllum filiforme[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

  Mauritania

A rugose coral belonging to the family Ptenophyllidae.

Acanthophyllum sougyi[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

  Mauritania

A rugose coral belonging to the family Ptenophyllidae.

Agetolites angullongensis[9]

Sp. nov

Valid

Zhen, Wang & Percival

Late Ordovician

Angullong Formation

  Australia

A tabulate coral.

Aulohelia carbonica[10]

Sp. nov

Valid

Niko & Fujikawa

Carboniferous (Viséan)

Akiyoshi Limestone Group

  Japan

A tabulate coral.

Bothrophyllum gorbachevensis[11]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Bothrophyllidae.

Bothrophyllum kalmyussi[11]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Bothrophyllidae.

Cambroctoconus koori[12]

Sp. nov

Valid

Peel

Cambrian Stage 4 or Stage 5

Henson Gletscher Formation

  Greenland

A possible member of Octocorallia.

Charactophyllum mauritanicum[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

  Mauritania

A rugose coral belonging to the family Disphyllidae.

Charactophyllum soraufi[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

  Mauritania

A rugose coral belonging to the family Disphyllidae.

Dianqianophyllum[13]

Gen. et sp. nov

Valid

Liao & Ma

Devonian (Givetian)

  China

A rugose coral. Genus includes new species D. bianqingense.

Dibunophylloides columnatus[14]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Aulophyllidae.

Dibunophylloides paulus[14]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Aulophyllidae.

Dibunophylloides similis[14]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Aulophyllidae.

Dibunophyllum medium[14]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Aulophyllidae.

Enniskillenia multiseptata[15]

Sp. nov

Valid

Bamber & Rodríguez in Bamber et al.

Carboniferous (Mississippian)

  Canada

A rugose coral.

Fungiaphyllia[16]

Gen. et sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/SinemurianPliensbachian)

  Afghanistan

A stony coral belonging to the family Latomeandridae. The type species is Fungiaphyllia communis.

Gillismilia[17]

Nom. nov

Valid

Lathuilière, Charbonnier & Pacaud

Early Jurassic (Pliensbachian)

  France

A coral; a replacement name for Palaeocyathus Alloiteau (1956).

Guembelastraea dronovi[16]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/Sinemurian)

  Afghanistan

A stony coral belonging to the family Tropiastraeidae, a species of Guembelastraea.

Lithostrotion termieri[18]

Sp. nov

Valid

Rodríguez & Somerville in Rodríguez, Somerville & Said

Carboniferous (Viséan)

Azrou-Khenifra Basin

  Morocco

A rugose coral belonging to the family Lithostrotionidae.

Macgeea tourneuri[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

  Mauritania

A rugose coral belonging to the family Phillipsastreidae.

Nina[11]

Gen. et 3 sp. et comb. nov

Junior homonym

Fedorowski

Carboniferous (Serpukhovian and Bashkirian)

  Ukraine

A rugose coral belonging to the family Bothrophyllidae. The type species is N. donetsiana; genus also includes new species N. dibimitaria and N. magna, as well as "Bothrophyllum" berestovensis Vassilyuk (1960). The generic name is preoccupied by Nina Horsfield (1829).

Oppelismilia spectabilis[16]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/Sinemurian)

  Afghanistan

A stony coral belonging to the family Oppelismiliidae, a species of Oppelismilia.

Parepismilia dolichostoma[16]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian–early Sinemurian)

  Afghanistan

A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

Parepismilia dronovi[16]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/Sinemurian)

  Afghanistan

A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

Periplacotrochus[19]

Gen. et comb. et sp. nov

Valid

Cairns

Late Eocene to middle Miocene

  Australia

A flabellid coral. Genus includes P. deltoideus (Duncan, 1864), P. corniculatus (Dennant, 1899), P. elongatus (Duncan, 1864), P. pueblensis (Dennant, 1903), P. inflectus (Dennant, 1903) and P. magnus (Dennant, 1904), as well as new species P. cudmorei.

Petrophyllia niimiensis[20]

Sp. nov

Valid

Niko, Suzuki & Taguchi

Miocene

Bihoku Group

  Japan

A stony coral.

Protomichelinia funafusensis[21]

Sp. nov

Valid

Niko

Early Permian

Funafuseyama Limestone

  Japan

A tabulate coral belonging to the order Favositida and the family Micheliniidae.

Qinscyphus[22]

Gen. et sp. nov

Valid

Liu et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

  China

A probable crown jellyfish belonging to the family Olivooidae. The type species is Q. necopinus.

Rozkowskia lenta[14]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Aulophyllidae.

Scoliopora hosakai[23]

Sp. nov

Valid

Niko, Ibaraki & Tazawa

Middle Devonian

  Japan

A tabulate coral belonging to the order Favositida and the family Alveolitidae.

Sinaster[24]

Gen. et sp. nov

Valid

Wang et al.

Early Cambrian

Kuanchuanpu Formation

  China

A member of Medusozoa belonging to the family Olivooidae. The type species is S. petalon.

Stephanophyllia plattenwaldensis[25]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (late Aptian to Albian)

Garschella Formation

  Austria

A stony coral belonging to the family Micrabaciidae.

Sterictopathes[26]

Gen. et sp. nov

Valid

Baliński & Sun

Ordovician (early Floian)

Fenxiang Formation
Honghuayuan Formation

  China

A black coral related to Sinopathes reptans. The type species is S. radicatus.

Voragoaxum[14]

Gen. et sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

  Ukraine

A rugose coral belonging to the family Aulophyllidae. The type species is V. cavum.

Zaphrentites etheringtonensis[15]

Sp. nov

Valid

Bamber & Rodríguez in Bamber et al.

Carboniferous (Mississippian)

  Canada

A rugose coral.

Zaphrentites lerandi[15]

Sp. nov

Valid

Bamber & Rodríguez in Bamber et al.

Carboniferous (Mississippian)

  Canada

A rugose coral.

Arthropods

edit

Bryozoans

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acupipora mexicana[28]

Sp. nov

Valid

Ernst & Vachard

Carboniferous (middle Pennsylvanian)

  Mexico

Adeonellopsis sandbergi[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Adeonidae.

'Akatopora' wilmseni[30]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (mid-late Turonian)

Strehlen Formation

  Germany

A cheilostome bryozoan.

Atactotoechus vaulxensis[31]

Sp. nov

Valid

Ernst et al.

Carboniferous (Mississippian)

  Belgium

A bryozoan.

Bashkirella arnaoense[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Chasmatoporidae.

Bigeyina cantabrica[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Bigeyina spinosa[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Bragella[33]

Gen. et sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

  Tanzania

A cheilostome bryozoan. Genus includes new species B. pseudofedora.

Buskia waiinuensis[34]

Sp. nov

Valid

Di Martino et al.

Pleistocene

Nukumaru Limestone

  New Zealand

A member of Ctenostomatida belonging to the superfamily Vesicularioidea and the family Buskiidae.

Cheiloporina clarksvillensis[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Cheiloporinidae.

Cigclisula solenoides[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Colatooeciidae.

Coeloclemis zefrehensis[35]

Sp. nov

Valid

Ernst et al.

Devonian (Frasnian)

Bahram Formation

  Iran

A trepostome bryozoan.

Diplosolen akatjevense[36]

Sp. nov

Valid

Viskova & Pakhnevich

Middle Jurassic (Callovian)

  Russia

A bryozoan belonging to the class Stenolaemata and the order Tubuliporida.

Ditaxipora lakriensis[37]

Sp. nov

Valid

Sonar & Pawar

Miocene (Burdigalian)

Chhasra Formation

  India

A member of the family Catenicellidae.

Eridopora moravica[38]

Sp. nov

Valid

Tolokonnikova, Kalvoda & Kumpan

Carboniferous (Tournaisian)

  Czech Republic

Escharoides joannae[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Romancheinidae.

Euthyrhombopora tenuis[35]

Sp. nov

Valid

Ernst et al.

Devonian (Frasnian)

Bahram Formation

  Iran

A rhabdomesine cryptostome bryozoan.

Exechonella minutiperforata[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Exechonellidae.

Exidmonea baghi[39]

Sp. nov

Valid

Zágoršek, Yazdi & Bahrami

Miocene

Qom Formation

  Iran

A cyclostome bryozoan.

Fabifenestella almazani[28]

Sp. nov

Valid

Ernst & Vachard

Carboniferous (middle Pennsylvanian)

  Mexico

Fenestrapora elegans[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (late Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Filites robustus[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Acanthocladiidae.

Floridina subantiqua[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Onychocellidae.

Foratella cervisia[40]

Sp. nov

Valid

Taylor & Martha

Late Cretaceous (Cenomanian)

Beer Head Limestone Formation

  United Kingdom

A cheilostome bryozoan.

Hagiosynodos simplex[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Cheiloporinidae.

Heteractis tanzaniensis[33]

Sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

  Tanzania

A cheilostome bryozoan.

Hillmeropora[30]

Gen. et sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (mid-late Turonian)

Strehlen Formation

  Germany

A cheilostome bryozoan genus belonging to the family Calloporidae. Type species H. pavonina; genus also includes Membranipora procurrens Brydone, 1929.

Jablonskipora[41]

Gen. et sp. nov

Valid

Martha & Taylor

Early Cretaceous (Albian)

Upper Greensand

  United Kingdom

A cheilostome bryozoan. The type species is J. kidwellae.

Kalvariella antiqua[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Acanthocladiidae.

Lacrimula crassa[33]

Sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

  Tanzania

A cheilostome bryozoan.

Lacrimula kilwaensis[33]

Sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

  Tanzania

A cheilostome bryozoan.

Margaretta pentaceratops[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Margarettidae.

Metrarabdotos aquaeguttum[42]

Sp. nov

Valid

Ramalho, Távora & Zagorsek

Early Miocene

Pirabas Formation

  Brazil

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

Metrarabdotos capanemensis[42]

Sp. nov

Valid

Ramalho, Távora & Zagorsek

Early Miocene

Pirabas Formation

  Brazil

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

Metrarabdotos elongatum[42]

Sp. nov

Valid

Ramalho, Távora & Zagorsek

Early Miocene

Pirabas Formation

  Brazil

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

Microeciella kolomnensis[36]

Sp. nov

Valid

Viskova & Pakhnevich

Middle Jurassic (Callovian)

  Russia

A bryozoan belonging to the suborder Tubuliporina and the family Oncousoeciidae.

Microporella rusti[34]

Sp. nov

Valid

Di Martino et al.

Pleistocene

Nukumaru Limestone

  New Zealand

A member of the family Microporellidae.

Nellia winstonae[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Quadricellariidae.

Nevianipora isfahani[39]

Sp. nov

Valid

Zágoršek, Yazdi & Bahrami

Miocene

Qom Formation

  Iran

A cyclostome bryozoan.

'Onychocella' barbata[30]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (late Cenomanian)

Dölzschen Formation

  Germany

A cheilostome bryozoan. Taylor, Martha & Gordon (2018) transferred this species to the genus Kamilocella.[43]

Onychocella saxoniae[30]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (late Cenomanian)

Dölzschen Formation

  Germany

A cheilostome bryozoan.

Paralicornia interdigitata[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Candidae.

Paraseptopora geometrica[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (late Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Septoporidae.

Paraseptopora irregularis[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Septoporidae.

Pharopora[44]

Gen. et sp. nov

Valid

Wyse Jackson, Ernst & Suárez Andrés

Carboniferous (Tournaisian)

Hook Head Formation

  Ireland

A member of Cryptostomata belonging to the family Rhabdomesidae. The type species is P. regularis.

Pleuromucrum epifanioi[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Phidoloporidae.

Pleuromucrum liowae[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Phidoloporidae.

Polyascosoecia iranica[39]

Sp. nov

Valid

Zágoršek, Yazdi & Bahrami

Miocene

Qom Formation

  Iran

A cyclostome bryozoan.

Puellina quadrispinosa[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Cribrilinidae.

Revalotrypa inopinata[45]

Sp. nov

Valid

Fedorov, Koromyslova & Martha

Ordovician (Floian)

  Russia

An esthonioporate bryozoan belonging to the family Revalotrypidae.

Revalotrypa yugaensis[45]

Sp. nov

Valid

Fedorov, Koromyslova & Martha

Ordovician (Floian)

  Russia

An esthonioporate bryozoan belonging to the family Revalotrypidae.

Schizolepraliella[29]

Gen. et sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A Schizoporella-like cheilostome bryozoan of uncertain phylogenetic placement. The type species is S. nancyae.

Selenaria lyrulata[46]

Sp. nov

Valid

López-Gappa, Pérez & Griffin

Early Miocene

Monte León Formation

  Argentina

A bryozoan belonging to the family Selenariidae.

Spiniflabellum jacksoni[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Cribrilinidae.

Steginoporella tiara[47]

Sp. nov

Valid

Gordon, Voje & Taylor

Early Pleistocene

  New Zealand

A member of Cheilostomata belonging to the family Steginoporellidae.

Stylopoma farleyensis[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Schizoporellidae.

Stylopoma leverhulme[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Schizoporellidae.

Thalamoporella bitorquata[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella hastigera[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella ogivalis[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella papalis[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella polygonalis[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Trypostega vokesi[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Trypostegidae.

Turbicellepora giardinai[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Celleporidae.

Utropora parva[32]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

  Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Vix scolaroi[29]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

  United States
(  Florida)

A cheilostome bryozoan belonging to the family Vicidae.

Wilbertopora manubriformis[40]

Sp. nov

Valid

Taylor & Martha

Late Cretaceous (Cenomanian)

Beer Head Limestone Formation

  United Kingdom

A cheilostome bryozoan.

Wilbertopora ostiolatoides[30]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (mid-late Turonian)

Strehlen Formation

  Germany

A cheilostome bryozoan.

Brachiopods

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acrothyra bonnia[50]

Sp. nov

Valid

Skovsted et al.

Cambrian Stage 4

Forteau Formation

  Canada
(  Newfoundland and Labrador)

A member of Acrotretida belonging to the family Acrotretidae.

Anarhynchia smithi[51]

Sp. nov

Valid

Pálfy et al.

Early Jurassic (Pliensbachian)

Inklin Formation

  Canada
(  British Columbia)

Atelelasma longisulcum[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

  Ireland

A member of Strophomenata belonging to the order Billingsellida and the family Clitambonitidae.

Atychorhynchia[53]

Gen. et sp. nov

Valid

Baeza-Carratalá, Reolid & García Joral

Early Jurassic (late Pliensbachian–early Toarcian)

Zegrí Formation

  Spain

A member of Rhynchonellida belonging to the family Norellidae. The type species is A. falsiorigo.

Avdeevella[54]

Gen. et sp. nov

Valid

Baranov

Ordovician

  Russia

The type species is A. mica.

Bilobia alichovae[55]

Sp. nov

Valid

Madison

Ordovician (Sandbian)

  Russia
(  Leningrad Oblast)

A member of Strophomenida.

Bittnerithyris[56]

Gen. nov

Valid

Popov & Zakharov

Early Triassic (Olenekian)

  Russia
(  Primorsky Krai)

A member of Terebratulida.

Bronnothyris danaperensis[57]

Sp. nov

Valid

Bitner & Müller

Eocene (Priabonian)

  Ukraine

A member of Terebratulida belonging to the family Megathyrididae.

Burrirhynchia albiensis[58]

Sp. nov

Valid

Gaspard

Early Cretaceous (Albian)

  France

A member of Rhynchonellida belonging to the family Tetrarhynchiidae.

Colaptomena auduni[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Tramore Limestone Formation

  Ireland

A member of Strophomenida belonging to the family Rafinesquinidae.

Cyrtinaella? houi[59]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

  China

A member of Spiriferinida.

Cyrtospirifer ainosawensis[60]

Sp. nov

Valid

Tazawa, Inose & Kaneko

Late Devonian

Ainosawa Formation

  Japan

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Cyrtospirifer choanjiensis[61]

Sp. nov

Valid

Tazawa

Late Devonian

  Japan

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Dactylogonia costellata[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

  Ireland

A member of Strophomenida belonging to the family Strophomenidae.

Dirafinesquina antiqua[62]

Sp. nov

Valid

Popov & Cocks

Ordovician (Dapingian)

  Iran

A strophomenoid brachiopod.

Discinisca suborbicularis[63]

Sp. nov

Valid

Smirnova et al.

Late Jurassic

  Russia

Discinisca undata[64]

Sp. nov

Valid

Smirnova in Smirnova et al.

Late Jurassic

  Russia

A brachiopod belonging to the family Discinidae, a species of Discinisca.

Elkanathyris[65]

Gen. et sp. nov

Valid

Copper & Jin

Silurian (Aeronian)

  Canada
(  Quebec)

An athyride brachiopod. The type species is E. pallula.

Eoporambonites raziabadensis[62]

Sp. nov

Valid

Popov & Cocks

Ordovician (Dapingian)

  Iran

A porambonitoid brachiopod.

Foveola ivari[66]

Sp. nov

Valid[67]

Holmer et al.

Ordovician (Sandbian)

  Estonia

A member of Obolidae.

Gypidula xui[59]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

  China

A member of Pentamerida.

Hesperorthis leinsterensis[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

  Ireland

A member of Orthida belonging to the family Hesperorthidae.

Hexigtenichonetes[68]

Gen. et comb. nov

Valid

Shen in Shen et al.

Permian (Guadalupian)

Miaoling Formation

  China

A member of Productida belonging to the family Rugosochonetidae. The type species is "Hemichonetes" hemipleura Li & Su in Li et al. (1980); genus also includes "Hemichonetes guangxingensis Li & Su in Li et al. (1980), "Hemichonetes subquadrata Li & Su in Li et al. (1980) and "Hemichonetes yanjiensis Li & Su in Li et al. (1980).

Hibernobonites[52]

Gen. et comb. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation
Tourmakeady Limestone Formation?

  Ireland

A member of Pentamerida belonging to the family Porambonitidae. The type species is "Atrypa" filosa M'Coy (1846); genus might also include "Porambonites" dubius Williams & Curry (1985).

Howellites hibernicus[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

  Ireland

A member of Orthida belonging to the family Dalmanellidae.

Isophragma parallelum[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

  Ireland

A member of Strophomenida belonging to the family Plectambonitidae.

Joania ukrainica[57]

Sp. nov

Valid

Bitner & Müller

Eocene (Priabonian)

  Ukraine

A member of Terebratulida belonging to the family Megathyrididae.

Karadagithyris boullierae[69]

Sp. nov

Valid

Halamski & Cherif

Late Jurassic (Oxfordian)

Argiles de Saïda Formation

  Algeria

A member of Terebratulida belonging to the family Muirwoodellidae.

Karlsorus[70]

Gen. et comb. nov

Valid

Jin & Holmer

Silurian (Wenlock)

  Sweden

A new genus for "Pentamerus" gothlandicus Lebedev (1892).

Koninckodonta sumuntanensis[53]

Sp. nov

Valid

Baeza-Carratalá, Reolid & García Joral

Early Jurassic (late Pliensbachian–early Toarcian)

Zegrí Formation

  Spain

A member of Athyridida belonging to the family Koninckinidae.

Kurtothyris[68]

Nom. nov

Valid

Shen in Shen et al.

Permian (late Cisuralian)

Chihsia Formation

  China

A member of Spiriferida belonging to the family Skelidorygmidae; a replacement name for Litothyris Chang (1987). The type species is "Litothyris" anhuiensis Chang (1987).

Kyrshabaktella diabola[50]

Sp. nov

Valid

Skovsted et al.

Cambrian Stage 4

Forteau Formation

  Canada
(  Newfoundland and Labrador)

A member of Linguloidea belonging to the family Kyrshabaktellidae.

Lacunites ivantsovi[66]

Sp. nov

Valid[67]

Holmer et al.

Ordovician (early Darriwilian)

  Russia

A paterinid brachiopod.

Lamellaerhynchia carronensis[58]

Sp. nov

Valid

Gaspard

Early Cretaceous (Albian)

  France

A member of Rhynchonellida belonging to the family Cyclothyrididae.

Leptagonia franca[71]

Sp. nov

Valid

Mottequin & Simon

Carboniferous (Tournaisian)

Tournai Formation

  Belgium

A member of Strophomenoidea belonging to the family Rafinesquinidae.

Levipugnax? liui[59]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

  China

A member of Rhynchonellida.

Liaotarimella[68]

Nom. nov

Valid

Shen in Shen et al.

Permian (Artinskian)

Wutankule Formation

  China

A member of Productida belonging to the family Productellidae. A replacement name for Tarimella Chen (2004). The type species is "Tarimella" tarimensis Chen (2004).

Lichuanorelloides[72]

Gen. et sp. nov

Valid

Wang et al.

Early Triassic

  China

Genus includes new species L. lichuanensis.

Meristella? aksuensis[73]

Sp. nov

Valid

Modzalevskaya et al.

Devonian (Lochkovian)

  Tajikistan

Nisusia guizhouensis[74]

Sp. nov

Valid

Mao et al.

Cambrian

Kaili Formation
Qingxudong Formation

  China

A brachiopod belonging to the subphylum Rhynchonelliformea, order Kutorginida and the family Nisusiidae.

Nucleospira hannoniae[71]

Nom. nov

Valid

Mottequin & Simon

Carboniferous (Tournaisian)

Tournai Formation

  Belgium

A member of Athyridida belonging to the family Nucleospiridae; a replacement name for Athyris globulina de Koninck (1887).

Onniella variabilis[75]

Sp. nov

Valid

Harper, Parkes & Zhan

Ordovician (Katian)

Raheen Formation

  Ireland

A dalmanelloid brachiopod belonging to the family Dalmanellidae.

Ouraniorhynchus[73]

Gen. et sp. nov

Valid

Modzalevskaya et al.

Devonian (Lochkovian)

  Tajikistan

A brachiopod. Genus includes new species O. dronovi.

Permocryptospirifer[68]

Gen. et comb. nov

Valid

Shen & Grunt in Shen et al.

Permian (late Cisuralian and Guadalupian)

Chihsia Formation
Maokou Formation
Shazipo Formation

  China

A member of Athyridida belonging to the family Athyrididae. The type species is "Cryptospirifer" omeishanensis Huang (1933); genus also includes "Cryptospirifer" minor Yang (1984) and "Cryptospirifer" shawanensis Jin et al. (1974).

Piarorhynchella tazawai[56]

Sp. nov

Valid

Popov & Zakharov

Early Triassic (Olenekian)

  Russia
(  Primorsky Krai)

A member of Rhynchonellida.

Platystrophia tramorensis[52]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Tramore Limestone Formation

  Ireland

A member of Orthida belonging to the family Platystrophiidae.

Pustulobolus[50]

Gen. et sp. nov

Valid

Skovsted et al.

Cambrian Stage 3-4

Forteau Formation

  Canada
(  Newfoundland and Labrador)

A member of Linguloidea belonging to the family Eoobolidae. The type species is P. triangulus.

Qidongia[59]

Gen. et sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

  China

A member of Terebratulida. The type species is Q. tani.

Rhipidomella discreta[76]

Sp. nov

Valid

Cisterna et al.

Carboniferous (late SerpukhovianBashkirian)

El Paso Formation

  Argentina

A brachiopod belonging to the group Orthida and the family Rhipidomellidae.

Rioultina zalasensis[77]

Sp. nov

Valid

Radwańska

Late Jurassic (Oxfordian)

  Poland

A member of Thecideida belonging to the family Thecidellinidae.

Sericoidea hibernica[75]

Sp. nov

Valid

Harper, Parkes & Zhan

Ordovician (Katian)

Raheen Formation

  Ireland

A plectambonitoid brachiopod belonging to the family Sowerbyellidae.

Serratocrista scaldisensis[71]

Sp. nov

Valid

Mottequin & Simon

Carboniferous (Tournaisian)

Tournai Formation

  Belgium

A member of Orthotetida belonging to the family Schuchertellidae.

Simehorthis[78]

Gen. et sp. nov

Valid

Kebria-Ee Zadeh, Popov & Ghobadi Pour

Ordovician (Darriwilian)

Lashkarak Formation

  Iran

A member of Orthida belonging to the family Hesperorthidae. Genus includes new species S. fascicostellata.

Somalithyris lakhaparensis[79]

Sp. nov

Valid

Mukherjee & Shome

Late Jurassic (Tithonian)

  India

Starnikoviella[54]

Gen. et sp. nov

Valid

Baranov

Ordovician

  Russia

The type species is S. settedabanica.

Tectogonotoechia rivasi[80]

Sp. nov

Valid

García-Alcalde & Herrera

Devonian (Pragian)

Nogueras Formation

  Spain

A member of Rhynchonellida belonging to the superfamily Ancistrorhynchoidea and the family Iberirhynchiidae.

Thomasaria? baii[59]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

  China

A member of Spiriferida.

Thomasaria? liangi[59]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

  China

A member of Spiriferida.

Tunethyris blodgetti[81]

Sp. nov

Valid

Feldman

Middle Triassic

Saharonim Formation

  Israel

A member of Terebratulida belonging to the family Dielasmatidae.

Westonia mardini[82]

Sp. nov

Valid

Mergl et al.

Cambrian (Furongian)

Sosink Formation

  Turkey

Xiangia[59]

Gen. et sp. nov

Junior homonym

Lü & Ma

Devonian (late Frasnian)

  China

A member of Spiriferida. The type species is X. liaoi. The generic name is preoccupied by Xiangia Peng (1987).

Zhanorthis[62]

Gen. et sp. nov

Valid

Popov & Cocks

Ordovician (Dapingian)

  Iran

An orthoid brachiopod. Genus includes new species Z. gerdkuhensis.

Ziyunospirifer[83]

Nom. nov

Valid

Shen in Shen et al.

Early Carboniferous

Zhaojiashan Formation

  China

A member of Spiriferida belonging to the family Choristitidae; a replacement name for Quizhouspirifer Xian (1982). The type species is "Quizhouspirifer" ziyunensis Xian (1982).

Molluscs

edit

Echinoderms

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Amblypygus matruhensis[100]

Sp. nov

Valid

Ali

Middle Miocene

  Egypt

A sea urchin.

Ambonacrinus[101]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

  Spain

A diplobathrid camerate crinoid. Genus includes new species A. decorus.

Andymetra toarcensis[102]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

  France

A comatulid crinoid.

Anthroosasterias[103]

Gen. et sp. nov

Valid

Blake

Carboniferous

Gilmore City Formation

  United States
(  Iowa)

A starfish belonging to the family Urasterellidae. Genus includes new species A. mikrotero.

Antillaster farisi[104]

Sp. nov

Valid

Ali

Middle Eocene

  Egypt

A sea urchin.

Aspidophiura? seren[105]

Sp. nov

Valid

Ewin & Thuy

Jurassic

Oxford Clay Formation

  United Kingdom

A brittle star.

Ateleocystites? lansae[106]

Sp. nov

Valid

McDermott & Paul

Ordovician (Katian)

Slade and Redhill Beds

  United Kingdom

A mitrate belonging to the family Anomalocystitidae, possibly a species of Ateleocystites.

Brissus mihalyi[107]

Sp. nov.

Valid

Polonkai et al.

Middle Miocene

Leitha Limestone Formation

  Hungary

A heart urchin belonging to the family Brissidae.

Crepidosoma doylei[108]

Sp. nov

Valid

Blake, Donovan & Harper

Silurian (Telychian)

Kilbride Formation

  Ireland

A brittle star belonging to the group Oegophiurida and the family Encrinasteridae.

Dalicrinus[101]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

  Spain

A diplobathrid camerate crinoid. Genus includes new species D. hammanni.

Diplodetus brisenoi[109]

Sp. nov

Valid

Silva-Martínez et al.

Late Cretaceous (early Campanian)

Austin Formation

  Mexico

A heart urchin belonging to the family Brissidae.

Echinocyamus belali[104]

Sp. nov

Valid

Ali

Middle Eocene

  Egypt

A sea urchin.

Enakomusium whymanae[105]

Sp. nov

Valid

Ewin & Thuy

Jurassic

Oxford Clay Formation

  United Kingdom

A brittle star.

Eopatelliocrinus hispaniensis[101]

Sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

  Spain

A monobathrid camerate crinoid.

Eotiaris guadalupensis[110]

Sp. nov

Valid

Thompson in Thompson, Petsios & Bottjer

Permian (Capitanian)

Bell Canyon Formation

  United States
(  Texas)

A sea urchin. The name first appeared in the publication of Thompson et al. (2015);[111] however, it was published in an online only journal Scientific Reports and it was not registered with ZooBank, making it invalid until it was validated by Thompson, Petsios & Bottjer (2017).[110]

Felbabkacystis[112]

Gen. et sp. nov

Valid

Nardin et al.

Cambrian (Drumian)

Jince Formation

  Czech Republic

A transitional form between calyx-bearing and theca-bearing blastozoans. Genus includes new species F. luckae.

Fombuenacrinus[101]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

  Spain

A diplobathrid camerate crinoid. Genus includes new species F. nodulus.

Forcipicrinus[102]

Gen. et sp. nov

Valid

Hess & Thuy

Early Jurassic

  France

An isocrinid crinoid. Genus includes new species F. normannicus.

Globator roselli[113]

Sp. nov

Valid

Carrasco

Eocene

  Spain

A sea urchin related to members of the genus Conulus.

Goniopygus emmae[114]

Sp. nov

Valid

Forner i Valls

Late Cretaceous (Campanian)

  Morocco

A sea urchin belonging to the group Arbacioida and the family Acropeltidae.

Grigopyrgus[115]

Gen. et comb. nov

Valid

Müller & Hahn

Early Devonian

  Germany

A member of Edrioasteroidea belonging to the family Agelacrinitidae; a new genus for "Agelacrinites" curvatus Grigo (1995).

Goyacrinus[101]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

  Spain

A diplobathrid camerate crinoid. Genus includes new species G. gutierrezi.

Heropyrgus[116]

Gen. et sp. nov

Valid

Briggs et al.

Silurian

Herefordshire Lagerstätte

  United Kingdom

A rhenopyrgid edrioasteroid. The type species is H. disterminus.

Holocystites salmoensis[117]

Sp. nov

Valid

Sheffield, Ausich & Sumrall

Ordovician (Hirnantian)

Ellis Bay Formation

  Canada
(  Quebec)

A member of Diploporita belonging to the group Sphaeronitida and the family Holocystitidae.

Metalia lindaae[104]

Sp. nov

Valid

Ali

Middle Eocene

  Egypt

A sea urchin.

Monostychia alanrixi[118]

Sp. nov

Valid

Sadler, Martin & Gallagher

Miocene

Colville Sandstone

  Australia

A sea urchin.

Monostychia macnamarai[118]

Sp. nov

Valid

Sadler, Martin & Gallagher

Miocene

Colville Sandstone

  Australia

A sea urchin.

Monostychia robertirwini[118]

Sp. nov

Valid

Sadler, Martin & Gallagher

Miocene

Colville Sandstone

  Australia

A sea urchin.

Moroccodiscus[119]

Gen. et sp. nov

Valid

Reich et al.

Ordovician (Darriwilian)

Taddrist Formation

  Morocco

A cyclocystoid echinoderm. Genus includes new species M. smithi.

Oehlerticrinus peachi[120]

Sp. nov

Valid

Donovan & Fearnhead

Early Devonian

Looe Basin

  United Kingdom

A crinoid belonging to the group Monobathrida and the family Hexacrinitidae.

Ophiotitanos smithi[105]

Sp. nov

Valid

Ewin & Thuy

Jurassic

Oxford Clay Formation

  United Kingdom

A brittle star.

Ova rancoca[121]

Sp. nov

Valid

Zachos

Paleocene (Thanetian)

Vincentown Formation

  United States
(  New Jersey)

A sea urchin.

Paerticrinus[122]

Gen. et sp. nov

Valid

Wright & Toom

Silurian (Rhuddanian)

  Estonia

A crinoid. Genus includes new species P. arvosus.

Palaeocomaster structus[102]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

  France

A comatulid crinoid.

Persiacarpos[123]

Gen. et sp. nov

Valid

Rozhnov & Parsley

Cambrian

Mila Formation

  Iran

A member of Cornuta. Genus includes new species P. jefferiesi.

Petalobrissus ossoi[114]

Sp. nov

Valid

Forner i Valls

Late Cretaceous (Campanian)

  Morocco

A sea urchin belonging to the group Cassiduloida and the family Faujasidae.

Petalocrinus stenopetalus[124]

Sp. nov

Valid

Mao et al.

Silurian (Aeronian)

  China

A crinoid belonging to the family Petalocrinidae.

Picassocrinus[101]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

  Spain

A cladid crinoid. Genus includes new species P. villasi.

Ronsocrinus[125]

Gen. et sp. nov

Valid

Cordie & Witzke

Devonian (Givetian)

  United States
(  Iowa)

A camerate crinoid belonging to the family Melocrinitidae. Genus includes new species R. rabia.

Salenia palmyra[121]

Sp. nov

Valid

Zachos

Paleocene (Danian)

Clayton Formation

  United States
(  Alabama
  Georgia (U.S. state))

A sea urchin.

Sanducystis[126]

Gen. et sp. nov

Valid

Zamora et al.

Cambrian (Furongian)

Sandu Formation

  China

A stemmed echinoderm. The type species is S. sinensis.

Singillatimetra truncata[102]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

  France

An isocrinid crinoid.

Solanocrinites jagti[102]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

  France

A comatulid crinoid.

Spinimetra[102]

Gen. et sp. nov

Valid

Hess & Thuy

Early Jurassic

  France

A comatulid crinoid. Genus includes new species S. chesnieri.

Spirocrinus circularis[124]

Sp. nov

Valid

Mao et al.

Silurian (Aeronian)

  China

A crinoid belonging to the family Petalocrinidae.

Spirocrinus dextrosus[124]

Sp. nov

Valid

Mao et al.

Silurian (Aeronian)

  China

A crinoid belonging to the family Petalocrinidae.

Staurasterias[103]

Gen. et sp. nov

Valid

Blake

Carboniferous

Keokuk Formation

  United States
(  Indiana)

A starfish belonging to the family Urasterellidae. Genus includes new species S. elegans.

Sumrallia[127]

Gen. et sp. nov

Valid

Müller & Hahn

Early Devonian

Seifen Formation

  Germany

A member of Edrioasteroidea. Genus includes new species S. rseiberti.

Superstesaster[128]

Gen. et sp. nov

Valid

Villier et al.

Early Triassic

  United States
(  Utah)

A starfish. Genus includes new species S. promissor.

Teleosaster[129]

Gen. et sp. nov

Valid

Hunter & McNamara

Permian (Kungurian)

Cundlego Formation

  Australia

A brittle star. Genus includes new species T. creasyi.

Tintinnabulicrinus[122]

Gen. et sp. nov

Valid

Wright & Toom

Ordovician (Katian)

  Estonia

A crinoid. Genus includes new species T. estoniensis.

Ulphaceaster[130]

Gen. et sp. nov

Valid

Néraudeau et al.

Late Cretaceous (Cenomanian)

  France

A sea urchin belonging to the family Archiaciidae. Genus includes new species U. sarthacensis.

Vologesia rollingstones[131]

Sp. nov

Valid

Schlüter & Wiese

Late Cretaceous (early Campanian)

  Spain

A sea urchin belonging to the family Echinolampadidae.

Conodonts

edit

Research

edit
  • A study on the conodont assemblage from the Silurian (Homerian) Rootsiküla Formation (Estonia), interpreted as occurring in the evaporite-bearing strata, and on the conodont diversity in various environments, is published by Jarochowska et al. (2017).[132]
  • Articulated skeletal remains of Hindeodus parvus, providing direct evidence of the number and arrangement of elements in the apparatus, are described from the Lower Triassic of China by Zhang et al. (2017).[133][134][135]

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acodus zeballus[136]

Sp. nov

Valid

Voldman & Albanesi in Voldman et al.

Early Ordovician

  Argentina

Aldridgeognathus[137]

Gen. et sp. nov

Valid

Miller et al.

Ordovician (Darriwilian)

Amdeh Formation

  Oman

A member of Balognathidae. Genus includes new species A. manniki.

Bispathodus ultimus corradinii[138]

Subsp. nov

Valid

Söte, Hartenfels & Becker

Devonian (Famennian)

  Germany

Coelocerodontus hunanensis[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Panjiazui Formation

  China

A euconodont.

Ctenopolygnathus parallelus[140]

Sp. nov

Valid

Ovnatanova et al.

Late Devonian

Kedzyrschor Formation

  Russia

Fahraeusodus jachalensis[141]

Sp. nov

Valid

Feltes & Albanesi in Serra et al.

Ordovician (Darriwilian)

Gualcamayo Formation
Las Aguaditas Formation
Las Chacritas Formation
San Juan Formation

  Argentina

Furnishina wangcunensis[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Bitiao Formation

  China

A member of Paraconodontida.

Gothodus vetus[136]

Sp. nov

Valid

Voldman & Albanesi in Voldman et al.

Early Ordovician

  Argentina

Guexispathodus[142]

Gen. et comb. nov

Valid

Plasencia et al.

Middle Triassic

Mukheiris Formation
Saharonim Formation

  Israel
  Jordan

A member of the family Gondolellidae. The type species is "Neospathodus" shagami Benjamini & Chepstow-Lusty (1986); genus also includes "Pseudofurnishius" siyalaensis Sadeddin & Kozur (1992).

Gullodus tieqiaoensis[143]

Sp. nov

Valid

Sun et al.

Permian

  China

Icriodus ballbergensis[144]

Sp. nov

Valid

Lüddecke, Hartenfels & Becker

Devonian (Famennian)

  Germany

Icriodus marieae[145]

Sp. nov

Valid

Suttner, Kido & Suttner

Middle Devonian

Valentin Formation

  Austria
  France
  Germany

Idiognathodus boardmani[146]

Sp. nov

Valid

Hogancamp & Barrick

Carboniferous (Gzhelian)

Heebner Shale

  United States

Idiognathodus itaitubensis[147]

Sp. nov

Valid

Cardoso, Sanz-López & Blanco-Ferrera

Carboniferous (Pennsylvanian)

Tapajós Group

  Brazil

Idiognathoides luokunensis[148]

Sp. nov

Valid

Hu & Qi in Hu et al.

Carboniferous (Bashkirian)

  China

Iowagnathus[149]

Gen. et sp. nov

Valid

Liu et al.

Ordovician (Whiterock Stage)

Winneshiek Konservat-Lagerstätte

  United States
(  Iowa)

Genus includes new species I. grandis.

 

Kirilella[142]

Gen. et comb. nov

Valid

Plasencia et al.

Middle Triassic

  Austria
  Canada
  China
  Egypt
  Hungary
  Israel
  Italy
  Japan
  Jordan
  Russia
  Spain
  United States

A member of the family Gondolellidae. The type species is "Polygnathus" mungoensis Diebel (1956); genus also includes "Tardogondolella" diebeli Kozur & Mostler (1971), "Epigondolella" mostleri Kozur in Kozur & Mock (1972) and "Metapolygnathus" longobardicus Kovács (1983).

Laiwugnathus hunanensis[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Drumian)

Huaqiao Formation

  China

A member of Paraconodontida.

Laiwugnathus transitans[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian and Paibian)

Chefu Formation

  China

A member of Paraconodontida.

Lenathodus[150]

Gen. et sp. nov

Valid

Izokh in Izokh & Yazikov

Early Carboniferous

  Russia

Genus includes new species L. bakharevi.

Lugnathus[139]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian Stage 10 and Early Ordovician (Tremadocian)

Panjiazui Formation

  China

A member of Paraconodontida. Genus includes new species L. hunanensis.

Marquezella[142]

Gen. et comb. nov

Valid

Plasencia et al.

Middle Triassic

  Austria
  Bulgaria
  China
  France
  Greece
  Hungary
  India
  Italy
  Japan
  Russia
  Slovakia
  Slovenia
  Spain

A member of the family Gondolellidae. The type species is "Gladigondolella" truempyi Hirsch (1971); genus also includes "Polygnathus" japonicus Hayashi (1968).

Mayrodus[151]

Gen. et sp. nov

Valid

Zhang, Jowett & Barnes

Silurian (Sheinwoodian)

Cape Phillips Formation

  Canada
(  Nunavut)

A conodont of uncertain phylogenetic placement. The type species is M. melchini.

Miaognathus[139]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian Stage 10

Shenjiawan Formation

  China

A member of Paraconodontida. Genus includes new species M. multicostatus.

Millerodontus[139]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Shenjiawan Formation

  China

A euconodont. Genus includes new species M. intermedius.

Mosherella praebudaensis[152]

Sp. nov

Valid

Chen & Lukeneder

Late Triassic (Carnian)

Kasimlar Formation

  Turkey

Neopolygnathus communis yazikovi[150]

Subsp. nov

Valid

Izokh in Izokh & Yazikov

Early Carboniferous

  Russia

Neopolygnathus crucesignatis[153]

Sp. nov

Valid

Plotitsyn & Zhuravlev

Carboniferous (Tournaisian)

  Russia

Norigondolella carlae[154]

Sp. nov

In press

Rigo et al.

Late Triassic (Carnian)

Scillato Formation

  Austria
  Italy
  Turkey

A member of Ozarkodinida.

Omanognathus[137]

Gen. et sp. nov

Valid

Miller et al.

Ordovician (Darriwilian)

Amdeh Formation

  Oman

A member of Balognathidae. Genus includes new species O. daiqaensis.

Palmatolepis chernovi[155]

Sp. nov

Valid

Soboleva

Devonian (Frasnian)

  Russia

Palmatolepis spallettae[156]

Nom. nov

Valid

Klapper et al.

Devonian (Frasnian)

  Canada
(  Ontario)

A replacement name for Palmatolepis nodosa Klapper et al. (2004).

Palmatolepis zhuravlevi[155]

Sp. nov

Valid

Soboleva

Devonian (Frasnian)

  Russia

Polygnathus arcus[153]

Sp. nov

Valid

Plotitsyn & Zhuravlev

Carboniferous (Tournaisian)

  Russia

Polygnathus mawsonae[140]

Sp. nov

Junior homonym

Ovnatanova et al.

Devonian (Famennian)

Sortomael' Formation

  Australia
  Russia

Ovnatanova et al. (2019) coined a replacement name Polygnathus sharyuensis.[157]

Polygnathus postvogesi[158]

Sp. nov

Valid

Plotitsyn & Zhuravlev

Carboniferous (Tournaisian)

  Russia

Prosagittodontus compressus[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian and Paibian)

Chefu Formation

  China

A member of Paraconodontida.

Pseudohindeodus elliptica[143]

Sp. nov

Valid

Sun et al.

Permian

  China

Quadralella wanlanensis[159]

Sp. nov

Valid

Zhang et al.

Triassic

  China

Quadralella yongyueensis[159]

Sp. nov

Valid

Zhang et al.

Triassic

  China

Siphonodella carinata[160]

Sp. nov

Valid

Zhuravlev

Carboniferous (Tournaisian)

Idzhid Formation

  Russia
(  Komi Republic)

Siphonodella kalvodai[161]

Sp. nov

Valid

Kaiser, Kumpan & Cígler

Carboniferous (Tournaisian)

Líšeň Formation

  Czech Republic
  Tajikistan

A member of Ozarkodinida belonging to the family Elictognathidae.

Sweetognathus asymmetrica[143]

Sp. nov

Valid

Sun et al.

Permian

  China

Tujiagnathus[139]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Bitiao Formation

  China

A euconodont. Genus includes new species T. gracilis.

Vjalovognathus carinatus[162]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

  China
  India

Wangcunella[139]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Bitiao Formation

  China

A euconodont. Genus includes new species W. conicus.

Wangcunognathus[139]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Paibian)

Bitiao Formation

  China

A member of Paraconodontida. Genus includes new species W. elegans.

Westergaardodina dimorpha[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Paibian)

Bitiao Formation

  China

A member of Paraconodontida.

Westergaardodina gigantea[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian)

Chefu Formation

  China

A member of Paraconodontida.

Westergaardodina sola[139]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian)

Chefu Formation

  China

A member of Paraconodontida.

Zentagnathus[136]

Gen. et comb. nov

Valid

Voldman & Albanesi in Voldman et al.

Early Ordovician

  Argentina

A new genus for "Trapezognathus" primitivus Voldman, Albanesi & Zeballo in Voldman et al. (2013); genus also includes "Trapezognathus" argentinensis Rao et al. (1994)

Fishes

edit

Amphibians

edit

Research

edit
  • A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).[163]
  • A study on the evolution of forelimb musculature from the lobe-finned fish to early tetrapods is published online by Molnar et al. (2017).[164]
  • A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).[165]
  • A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).[166]
  • A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).[167]
  • A study on the earliest larval development in temnospondyls, as indicated by specimens from the Permian (Sakmarian) lake sediments near Obermoschel (Saar–Nahe Basin, Germany), is published by Werneburg (2017).[168]
  • A study on the histology of the small palatal plates and their denticles in a Permian dissorophoid temnospondyl from the Dolese Brothers Limestone Quarry near Richards Spur (Oklahoma, United States) is published by Gee, Haridy & Reisz (2017).[169]
  • Taxonomic revision of all described rhinesuchids and a study on the phylogenetic relationships of members of Rhinesuchidae is published by Marsicano et al. (2017), who transfer the species "Rhinesuchus" capensis Haughton (1925) to the genus Rhinesuchoides.[170]
  • New specimen of the rhinesuchid Australerpeton cosgriffi (a skull and mandible) is described from the Permian Rio do Rasto Formation (Brazil) by Azevedo, Vega & Soares (2017).[171]
  • A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).[172]
  • A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).[173]
  • An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.[174]
  • A juvenile specimen of Koskinonodon perfectus is described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).[175]
  • A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).[176]
  • A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).[177]
  • Fossilized soft tissues preserved with the type specimen of the salamander Phosphotriton sigei are described by Tissier, Rage & Laurin (2017).[178]
  • A study on the bite force in extant Cranwell's horned frog (Ceratophrys cranwelli) and its implications for estimating the bite force in the Late Cretaceous species Beelzebufo ampinga is published by Lappin et al. (2017).[179]
  • Frog fossils, including the first known fossils of shovelnose frogs, are described from the early Pliocene of Kanapoi (Kenya) by Delfino (2017).[180]
  • A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).[181]

New taxa

edit

Temnospondyls

edit
Name Novelty Status Authors Age Unit Location Notes Images

Aphaneramma gavialimimus[182]

Sp. nov

Valid

Fortuny et al.

Early Triassic (Olenekian)

  Madagascar

 
Aphaneramma

Chinlestegophis[183]

Gen. et sp. nov

Valid

Pardo, Small & Huttenlocker

Late Triassic

Chinle Formation

  United States
(  Colorado)

A member of Stereospondyli, possibly a stem-caecilian. The type species is C. jenkinsi.

Cyclotosaurus naraserluki[184]

Sp. nov

Valid

Marzola et al.

Late Triassic

Fleming Fjord Formation

  Greenland

 
Cyclotosaurus

Tomeia[185]

Gen. et sp. nov

Valid

Eltink, Stock Da-Rosa, & Dias-da-Silva

Early Triassic

Sanga do Cabral Formation

  Brazil

A capitosaur.

Lissamphibians

edit
Name Novelty Status Authors Age Unit Location Notes Images

Chachaiphrynus[186]

Gen. et sp. nov

Valid

Nicoli

Oligocene

  Argentina

A member of Odontophrynidae. The type species is C. lynchi.

Genibatrachus[187]

Gen. et sp. nov

Valid

Gao & Chen

Early Cretaceous

Guanghua (upper part of Longjiang) Formation

  China

A crown-group frog. The type species is G. baoshanensis.

Sanshuibatrachus[188]

Gen. et sp. nov

Valid

Wang, Roček & Dong

Early Eocene

  China

A pelobatoid frog of uncertain phylogenetic placement. Genus includes new species S. sinensis.

Other amphibians

edit
Name Novelty Status Authors Age Unit Location Notes Images

Spathicephalus marsdeni[189]

Sp. nov

Valid

Smithson et al.

Carboniferous (Viséan)

Anstruther Formation

  United Kingdom

A member of the superfamily Baphetoidea.

Yumenerpeton[190]

Gen. et sp. nov

Valid

Jiang, Ji & Mo

Middle Permian

Xidagou Formation

  China

A bystrowianid chroniosuchian. The type species is Y. yangi.

Reptiles

edit

Synapsids

edit

Non-mammalian synapsids

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Alemoatherium[221]

Gen. et sp. nov

Valid

Martinelli et al.

Late Triassic (late Carnian)

Santa Maria Formation

  Brazil

A cynodont belonging to the group Prozostrodontia. The type species is A. huebneri.

 

Aleodon cromptoni[222]

Sp. nov

Valid

Martinelli et al.

Triassic (Ladinian—early Carnian)

  Brazil
  Namibia?

A cynodont belonging to the family Chiniquodontidae.

 

Bulbasaurus[223]

Gen. et sp. nov

Valid

Kammerer & Smith

Late Permian

Teekloof Formation

  South Africa

A dicynodont belonging to the family Geikiidae. The type species is B. phylloxyron.

 

Dalongkoua[224]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Guodikeng Formation

  China

A therocephalian. The type species is D. fuae.

Microwhaitsia[225]

Gen. et sp. nov

Valid

Huttenlocker & Smith

Permian (Wuchiapingian)

Teekloof Formation

  South Africa

A whaitsiid therocephalian. The type species is M. mendrezi.

Nuurtherium[226]

Gen. et sp. nov

Valid

Velazco, Buczek & Novacek

Late Jurassic

Ulan Malgait Sequence

  Mongolia

A tritylodontid cynodont. The type species is N. baruunensis.

Ophidostoma[225]

Gen. et sp. nov

Valid

Huttenlocker & Smith

Permian (Wuchiapingian)

Teekloof Formation

  South Africa

A whaitsioid therocephalian of uncertain phylogenetic placement. The type species is O. tatarinovi.

Parasuminia[227]

Gen. et sp. nov

Valid

Kurkin

Permian (Severodvinian)

Poldarsa Formation

  Russia

An anomodont related to Suminia. Genus includes new species P. ivakhnenkoi.

Scalenodon ribeiroae[228]

Sp. nov

Valid

Melo, Martinelli & Soares

Triassic

Santa Maria Supersequence

  Brazil

A traversodontid cynodont.

Shartegodon[226]

Gen. et sp. nov

Valid

Velazco, Buczek & Novacek

Late Jurassic

Ulan Malgait Sequence

  Mongolia

A tritylodontid cynodont. The type species is S. altai.

Shiguaignathus[229]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Naobaogou Formation

  China

An akidnognathid therocephalian. The type species is S. wangi.

 

Mammals

edit

Other animals

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acoelia discontinua[251]

Sp. nov

Valid

Wu

Permian (Changhsingian)

  China

A calcareous sponge belonging to the order Inozoa and the family Acoeliidae.

Aeroretiolites[252]

Gen. et sp. nov

Valid

Melchin, Lenz & Kozłowska

Silurian

  Canada

A graptolite. Genus includes new species A. cancellatus.

Aladraco[253]

Nom. et sp. nov

Valid

Geyer

Cambrian

Jbel Wawrmast Formation
Tannenknock Formation

  Germany
  Morocco

A member of Hyolitha; a replacement name for Oxyprymna Kiderlen (1933). Genus includes A. schloppensis (Wurm, 1925) and a new species A. ougnatensis.

Allonnia erjiensis[254]

Sp. nov

Valid

Yun, Zhang & Li

Cambrian

Chengjiang Lagerstätte

  China

A chancelloriid.

Andiprion[255]

Gen. et sp. nov

Valid

Hints et al.

Ordovician (Dapingian)

  Argentina

A polychaete described on the basis of scolecodonts. Genus includes new species A. paxtonae.

Angulosuspongia[256][257]

Gen. et sp. nov

Valid

Yang et al.

Cambrian Stage 5

Kaili Formation

  China

A sponge belonging to the order Verongida and the family Vauxiidae. Genus includes new species A. sinensis.

Ankalodous[258]

Gen. et sp. nov

Valid

Shu et al.

Cambrian Series 3

Qiongzhusi (Chiungchussu) Formation

  China

An arrow worm. The type species is A. sericus.

Archaeochionelasmus[259]

Gen. et sp. nov

Valid

Kočí et al.

Late Cretaceous (Cenomanian)

Bohemian Cretaceous Basin

  Czech Republic

An animal of uncertain phylogenetic placement. Originally interpreted as a barnacle belonging to the group Balanomorpha and the superfamily Chionelasmatoidea; Gale & Skelton (2018) considered it to be a rudist bivalve instead.[260] Genus includes new species A. nekvasilovae.

Biskolites[261]

Gen. et sp. nov

Valid

Valent, Fatka & Marek

Cambrian (Drumian)

Buchava Formation

  Czech Republic

A member of Hyolitha. Genus includes new species B. iactans.

Capinatator[262]

Gen. et sp. nov

Valid

Briggs & Caron

Cambrian

Burgess Shale

  Canada
(  British Columbia)

An arrow worm. The type species is C. praetermissus.

 

Caryosyntrips camurus[245]

Sp. nov

Valid

Pates & Daley

Cambrian

Burgess Shale
Langston Formation
Valdemiedes Formation?

  Canada
(  British Columbia)
  United States
(  Utah)
  Spain?

A member of Radiodonta.

 

Caryosyntrips durus[245]

Sp. nov

Valid

Pates & Daley

Cambrian

Wheeler Shale

  United States
(  Utah)

A member of Radiodonta.

 

Cloudina ningqiangensis[263]

Sp. nov

Valid

Cai et al.

Late Ediacaran

  China

Cloudina xuanjiangpingensis[263]

Sp. nov

Valid

Cai et al.

Late Ediacaran

  China

Conchicolites rossicus[264]

Sp. nov

Valid

Vinn & Madison

Ordovician (Katian)

  Russia

A member of Cornulitida belonging to the family Cornulitidae.

Conciliospongia[265]

Gen. et sp. nov

Botting, Zhang & Muir

Late Ordovician

Wenchang Formation

  China

A stem-demosponge of uncertain phylogenetic placement. The type species is C. anjiensis.

Corallistes campanensis[266]

Sp. nov

Valid

Świerczewska-Gładysz

Late Cretaceous (early Campanian)

  Poland

A lithistid demosponge belonging to the family Corallistidae.

Cretacimermis aphidophilus[267]

Sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

  Myanmar

A nematode belonging to the family Mermithidae.

Eolorica[268]

Gen. et sp. nov

Valid

Harvey & Butterfield

Cambrian (Furongian)

Deadwood Formation

  Canada
(  Saskatchewan)

A member of the total group of Loricifera. The type species is E. deadwoodensis.

Eorograptus spirifer[252]

Sp. nov

Valid

Melchin, Lenz & Kozłowska

Silurian

  Canada

A graptolite.

Feiyanella[269]

Gen. et sp. nov

Valid

Han et al.

Earliest Cambrian

Kuanchuanpu Formation

  China

A Cloudina-like tubular microfossil. The type species is F. manica.

Geoditesia jordaniensis[270]

Sp. nov

Valid

Ungureanu, Ahmad & Farouk

Middle Jurassic (Callovian)

  Jordan

A sponge.

Glomerula gemmellaroi[271]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

"Pietra di Salomone" Limestone

  Italy

A polychaete belonging to the family Sabellidae, a species of Glomerula.

Guettardiscyphia zitti[272]

Sp. nov

Valid

Vodrážka

Late Cretaceous (Turonian)

Bílá Hora Formation

  Czech Republic

A hexactinellid sponge belonging to the family Cribrospongiidae.

Inquicus[273]

Gen. et sp. nov

Valid

Cong et al.

Early Cambrian

Chengjiang Lagerstätte

  China

A tiny worm infecting members of the genera Cricocosmia and Mafangscolex. Genus includes new species I. fellatus.

 

Keretsa[274]

Gen. et sp. nov

Valid

Ivantsov

Late Precambrian

Zimnie Gory Formation

  Russia
(  Arkhangelsk Oblast)

An early eumetazoan, showing similarities to the arthropod species Naraoia longicaudata. The type species is K. brutoni.

 

Labechia yeongwolense[275]

Sp. nov

Valid

Jeon et al.

Ordovician (Darriwilian)

Yeongheung Formation

  South Korea

A stromatoporoid.

Lepidocoleus kuangguoduni[276]

Sp. nov

Valid

Gügel et al.

Devonian (Eifelian)

Nandan Formation

  China

A machaeridian.

'Linevitus' guizhouensis[277]

Sp. nov

Valid

Sun et al.

Cambrian Stage 4

Balang Formation

  China

A member of Hyolitha.

Microdictyon cuneum[278]

Sp. nov

Valid

Wotte & Sundberg

Cambrian

  United States
(  Nevada)

A lobopodian.

Microdictyon montezumaensis[278]

Sp. nov

Valid

Wotte & Sundberg

Cambrian

  United States
(  Nevada)

A lobopodian.

Mughanniyyum[270]

Gen. et sp. nov

Valid

Ungureanu, Ahmad & Farouk

Middle Jurassic (Callovian)

  Jordan

A sponge. Genus includes new species M. hanium.

Multiconotubus[263]

Gen. et sp. nov

Valid

Cai et al.

Late Ediacaran

  China

A Cloudina-like fossil. Genus includes new species M. chinensis.

Neophrissospongia kacperskii[266]

Sp. nov

Valid

Świerczewska-Gładysz

Late Cretaceous (early Campanian)

  Poland

A lithistid demosponge belonging to the family Corallistidae.

Orthrozanclus elongata[279]

Sp. nov

Zhao & Smith in Zhao et al.

Cambrian Stage 3

Maotianshan Shales

  China

 

Ovatiovermis[280]

Gen. et sp. nov

Valid

Caron & Aria

Cambrian

Burgess Shale

  Canada
(  British Columbia)

A lobopodian belonging to the family Luolishaniidae. The type species is O. cribratus.

 

Pachinion canaliculatum[266]

Sp. nov

Valid

Świerczewska-Gładysz

Late Cretaceous (early Campanian)

  Poland

A lithistid demosponge belonging to the family Corallistidae.

Paratetragraptus cooperi[281]

Sp. nov

Valid

VandenBerg

Ordovician (early Floian)

  Australia

A graptolite belonging to the group Dichograptina and the family Phyllograptidae.

Paratetragraptus? henrywilliamsi[281]

Sp. nov

Valid

VandenBerg

Ordovician (early Floian)

  Australia

A graptolite belonging to the group Dichograptina and the family Phyllograptidae.

Paratetragraptus thomassmithi[281]

Sp. nov

Valid

VandenBerg

Ordovician (early Floian)

  Australia

A graptolite belonging to the group Dichograptina and the family Phyllograptidae.

Plumulites lamonti[282]

Sp. nov

Valid

Candela & Crighton

Silurian (Telychian)

Wether Law Linn Formation

  United Kingdom

A machaeridian.

Propomatoceros permianus[271]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

"Pietra di Salomone" Limestone

  Italy

A polychaete belonging to the family Serpulidae, a species of Propomatoceros.

Pseudoretiolites hyrichus[252]

Sp. nov

Valid

Melchin, Lenz & Kozłowska

Silurian

  Canada

A graptolite.

Pyrgopolon (Septenaria) cenomanensis[283]

Sp. nov

Valid

Kočí, Jäger & Morel

Late Cretaceous (Cenomanian)

  France

A polychaete belonging to the family Serpulidae.

Pyrgopolon (Turbinia?) gaiae[271]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

"Pietra di Salomone" Limestone

  Italy

A polychaete belonging to the family Serpulidae, a species of Pyrgopolon.

Radiofibrosclera[251]

Gen. et sp. nov

Valid

Wu

Permian (Changhsingian)

  China

A sclerosponge. The type species is R. laibinensis.

Ratcliffespongia arivechensis[284]

Sp. nov

Valid

Beresi et al.

Cambrian Series 3

  Mexico

A reticulosan sponge of uncertain phylogenetic placement.

Saccorhytus[285]

Gen. et sp. nov

Valid

Han et al.

Earliest Cambrian

  China

An animal of uncertain phylogenetic placement. Originally described as an early deuterostome related to vetulicolians and vetulocystids, but subsequently argued to be an ecdysozoan.[286] The type species is S. coronarius.

 

"Serpula" distefanoi[271]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

"Pietra di Salomone" Limestone

  Italy

A polychaete belonging to the family Serpulidae.

Serpula? pseudoserpentina[283]

Sp. nov

Valid

Kočí, Jäger & Morel

Late Cretaceous (Cenomanian)

  France

A polychaete belonging to the family Serpulidae.

Silicunculus saaqqutit[287]

Sp. nov

Valid

Peel

Cambrian Series 3

  Greenland

A sponge.

Singuuriqia[288]

Gen. et sp. nov

Valid

Peel

Cambrian Stage 3

Sirius Passet Lagerstätte

  Greenland

A member of Priapulida. Genus includes new species S. simoni.

Siphusauctum lloydguntheri[289]

Sp. nov

Valid

Kimmig, Strotz & Lieberman

Cambrian Stage 5

Spence Shale

  United States
(  Utah)

 

Tauricornicaris[243]

Gen. et 2 sp. nov

Valid[290]

Zeng et al.

Early Cambrian

Chengjiang Lagerstätte

  China

Originally considered as member of Radiodonta, possibly a member of Hurdiidae, but denied in 2018.[291][292] Genus includes new species T. latizonae and T. oxygonae.

Thoracospongia lacrimiformis[287]

Sp. nov

Valid

Peel

Cambrian Series 3

  Greenland

A sponge.

Tianzhushanella tolli[293]

Sp. nov

Valid

Kouchinsky et al.

Cambrian

Medvezhya Formation

  Russia

A member of Tianzhushanellidae (a group of animals of uncertain phylogenetic placement, possibly stem-brachiopods).

Tshallograptus[281]

Gen. et comb. et 3 sp. nov

Valid

VandenBerg

Ordovician (early Floian)

  Australia
  Canada

A graptolite belonging to the group Dichograptina and the family Phyllograptidae. The type species is "Graptolithus" fruticosus Hall (1858); genus also includes new species T. tridens, T. cymulus and T. furcillatus.

Valospongia sonorensis[284]

Sp. nov

Valid

Beresi et al.

Cambrian Series 3

  Mexico

A reticulosan sponge of uncertain phylogenetic placement.

Vittatusivermis[294]

Gen. et sp. nov

Zhang et al.

Cambrian (Fortunian)

Yuhucun Formation

  China

A worm-like organism, possibly a member of Bilateria of uncertain phylogenetic placement. The type species is V. annularius.

Websteroprion[295]

Gen. et sp. nov

Valid

Eriksson, Parry & Rudkin

Devonian (late Emsian-early Eifelian)

Kwataboahegan Formation

  Canada
(  Ontario)

A eunicidan polychaete of uncertain phylogenetic placement. The type species is W. armstrongi.

 

Other organisms

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acadialithus[312]

Gen. et 2 sp. nov

Valid

Howe

Late Jurassic (Tithonian)

  Bulgaria
Offshore eastern Newfoundland, Canada
Offshore in the eastern Gulf of Mexico
Offshore of the northeast coast of the United States

A nannofossil. Genus includes new species A. dennei and A. valentinei.

Adendorfia[313]

Gen. et sp. nov

Valid

Worobiec et al.

Miocene

  Germany

A fungus, probably a member of Chaetomiaceae. Genus includes new species A. miocenica.

Algites philippoviensis[314]

Sp. nov

Valid

Naugolnykh

Permian (Kungurian)

Philippovian Formation

  Russia

A brown alga.

Algites shurtanensis[314]

Sp. nov

Valid

Naugolnykh

Permian (Kungurian)

Shurtan Formation

  Russia

A brown alga.

Alpinoschwagerina nagatoensis[315]

Sp. nov

Valid

Kobayashi

Permian (Asselian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Amsassia argentina[316]

Sp. nov

Valid

Carrera, Astini & Gomez

Early Ordovician

La Silla Formation

  Argentina

A coral-like organism of uncertain phylogenetic placement.

Asterina indodeightonii[317]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

  India

A fungus, a species of Asterina.

Asterina mioconsobrina[317]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

  India

A fungus, a species of Asterina.

Asterina miosphaerelloides[317]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

  India

A fungus, a species of Asterina.

Asterina neocombreticola[317]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

  India

A fungus, a species of Asterina.

Asterina neoelaeocarpi[317]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

  India

A fungus, a species of Asterina.

Asterina presaracae[317]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

  India

A fungus, a species of Asterina.

Baculogypsinella[318]

Gen. et sp. nov

Valid

Matsumaru

Eocene

  Philippines

A foraminifer. Genus includes new species B. eocenica.

Blastanosphaira[319]

Gen. et sp. nov

Valid

Javaux & Knoll

Mesoproterozoic

Mainoru Formation

  Australia

A possible eukaryotic microorganism of uncertain phylogenetic placement. The type species is B. kokkoda.

Bonniea makrokurtos[320]

Sp. nov

Valid

Cohen, Irvine & Strauss

Tonian

Callison Lake Formation

  Canada
(  Yukon)

A vase-shaped microfossil.

Braarudosphaera pseudobatilliformis[321]

Sp. nov

Valid

Alves, Lima & Shimabukuro

Early Cretaceous (Aptian)

  Brazil

A haptophyte belonging to the family Braarudosphaeraceae.

Carbonoschwagerina nipponica[315]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian and Gzhelian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Cephalothecoidomyces[313]

Gen. et sp. nov

Valid

Worobiec et al.

Neogene

  Germany
  Poland

A fungus, probably a member of Cephalothecaceae. Genus includes new species C. neogenicus.

Chiphragmalithus muzylevii[322]

Sp. nov

Valid

Musatov

Eocene (Ypresian)

  Russia

A haptophyte.

Cobios[323]

Gen. et sp. nov

Valid

Du et al.

Ediacaran

Doushantuo Formation

  China

A red alga. The type species is Cobios rubo.

Curviacus[324]

Gen. et sp. nov

Valid

Shen et al.

Ediacaran

Dengying Formation

  China

A benthic modular organism consisting of serially arranged and crescent-shaped chambers. Genus includes new species C. ediacaranus.

Cyanonema grandis[325]

Sp. nov

Valid

Shi & Feng in Shi et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

  China

A member of Cyanobacteria belonging to the group Nostocales.

Cycliocyrillium rootsi[320]

Sp. nov

Valid

Cohen, Irvine & Strauss

Tonian

Callison Lake Formation
Chuar Group
(Kwagunt Formation)[326]

  Canada
(  Yukon)
  United States[326]

A vase-shaped microfossil. Originally described as a species of Cycliocyrillium, but subsequently transferred to the genus Obelix.[326] Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.[326]

Dalongicaepa[327]

Gen. et sp. et comb. nov

Valid

Xiao & Suzuki in Xiao, Suzuki & He

Late Permian

Upper Dalong Formation

  China
  Thailand

A radiolarian belonging to the group Spumellaria and the family Spongotortilispinidae. The type species is D. bipolaris; genus also includes "Pseudospongoprunum" fontainei Sashida in Sashida et al. (2000).

Denaricion[328]

Gen. et sp. nov

Valid

Bengtson in Bengtson et al.

~1.6 billion years ago

  India

An organism of uncertain phylogenetic placement, might be an alga or prokaryote. Genus includes new species D. mendax.

Devisphaera[329]

Gen. et sp. nov

Valid

Tang et al.

Late Mesoproterozoic – early Neoproterozoic

Madhubani Group

  India

An organic-walled microfossil. Genus includes new species D. corallis.

Discusphyton[330]

Gen. et sp. nov

Valid

Wang, Wang & Du

Ediacaran

Doushantuo Formation

  China

A macroalga of uncertain phylogenetic placement. Genus includes new species D. whenghuiensis.

Fissumella[331]

Gen. et sp. nov

Valid

Cruz-Abad et al.

Early Cretaceous (Albian)

  Italy

A foraminifer. Genus includes new species F. motolae.

Flabelloperforata[332]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

  Iran

A foraminifer belonging to the group Loftusiida, possibly a member of the family Biokovinidae. Genus includes new species F. tarburensis.

Gigadiacrodium[333]

Gen. et comb. et sp. nov

Valid

Szczepanik, Servais & Żylińska

Cambrian (Furongian)

Alum Shale Formation
Elliott's Cove Formation

  Canada
  Iran
  Italy
  Poland
  Sweden

An acritarch. The type species is "Veryhachium" martinum Pittau (1985); genus also includes new species G. vidalii.

Gigantosphaeridium floccosum[334]

Sp. nov

Valid

Agić, Moczydłowska & Yin

Early Mesoproterozoic

Ruyang Group

  China

A microfossil.

Gondwanagaricites[335][336]

Gen. et sp. nov

Valid

Heads, Miller & Crane

Early Cretaceous (Aptian)

Crato Formation

  Brazil

A gilled mushroom. Genus includes new species G. magnificus.

 

Hagenococcus[337]

Gen. et sp. nov

Valid

Krings et al.

Early Devonian

Rhynie chert

  United Kingdom

A microorganism of uncertain phylogenetic placement, most likely an alga with affinities to the Chlorophyta or Streptophyta. Genus includes new species H. aggregatus.

Haplophragmoides arcticus[338]

Sp. nov

Valid

Kaminski, Waskowska & Chan

Middle Pleistocene

Arctic Ocean
(Lomonosov Ridge)

A foraminifer.

Jigulites titanicus[315]

Sp. nov

Valid

Kobayashi

Carboniferous (Gzhelian) and Permian (Asselian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Limeta[339]

Gen. et sp. nov

Valid

Morais, Fairchild & Lahr in Morais et al.

Neoproterozoic

Urucum Formation

  Brazil

A vase-shaped microfossil. Genus includes new species L. lageniformis.

Montiparus minensis[315]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Nannoconus troelsenii[321]

Sp. nov

Valid

Alves, Lima & Shimabukuro

Early Cretaceous (Aptian)

  Brazil

A haptophyte belonging to the family Nannoconaceae.

Oscillatoriopsis gigas[325]

Sp. nov

Valid

Shi & Feng in Shi et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

  China

A member of Cyanobacteria belonging to the group Oscillatoriales.

Palaeoamphora[339]

Gen. et sp. nov

Valid

Morais, Fairchild & Lahr in Morais et al.

Neoproterozoic

Urucum Formation

  Brazil

A vase-shaped microfossil. Genus includes new species P. urucumense.

Palaeostromatus[340]

Gen. et sp. nov

Valid

Dentzien-Dias, Poinar & Francischini

Permian (Guadalupian)

Rio do Rasto Formation

  Brazil

An actinomycete. Genus includes new species P. diairetus.

Paleohaimatus[341]

Gen. et sp. nov

Valid

Poinar

Eocene-Miocene

El Mamey Formation
(Dominican amber)

  Dominican Republic

A member of Apicomplexa belonging to the group Piroplasmida. Genus includes new species P. calabresi.

Parastaffelloides kanmerai[315]

Sp. nov

Valid

Kobayashi

Carboniferous (Moscovian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Pentadinium darmirae[342]

Sp. nov

Valid

Slimani & Ţabără in Ţabără et al.

Paleocene (Danian)

Izvor Formation
Runcu Formation

  Romania

A dinoflagellate belonging to the group Gonyaulacales and the family Gonyaulacaceae.

Persiella[332]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

  Iran

A foraminifer belonging to the group Loftusiida, possibly a member of the family Spirocyclinidae. Genus includes new species P. pseudolituus.

Pocillithus crucifer[343]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte belonging to the family Papposphaeraceae.

Pocillithus macleodii[343]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte belonging to the family Papposphaeraceae.

Quasifusulinoides grandis[315]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Rafatazmia[328]

Gen. et sp. nov

Valid

Bengtson in Bengtson et al.

~1.6 billion years ago

  India

An alga of uncertain phylogenetic placement. Genus includes new species R. chitrakootensis.

Ramathallus[328]

Gen. et sp. nov

Valid

Sallstedt in Bengtson et al.

~1.6 billion years ago

  India

A possible stem-florideophycean red algae. Genus includes new species R. lobatus.

 

Schwagerina wakatakeyamensis[315]

Sp. nov

Valid

Kobayashi

Permian (Asselian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Schwagerina watanabei[315]

Sp. nov

Valid

Kobayashi

Permian (Asselian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Spearlithus[344]

Gen. et 12 sp. nov

Valid

Da Gama

Pleistocene

  Dominican Republic

A calcareous nannofossil of uncertain phylogenetic placement.

Staffella subsphaerica[315]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian and Gzhelian)

Akiyoshi Limestone Group

  Japan

A foraminifer belonging to the group Fusulinida.

Stradnerlithus? haynesiae[343]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

Stradnerlithus wendleri[343]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

Suraqalatia[345]

Gen. et sp. nov

Valid

Görmüş, Ameen Lawa & Al Nuaimy

Late Cretaceous (Maastrichtian)

  Iraq

A foraminifer belonging to the family Dicyclinidae. Genus includes new species S. brasieri.

Synaptomitus[346]

Gen. et sp. nov

Valid

Poinar

Eocene to Miocene

Dominican amber

  Dominican Republic

Originally described as a fungus belonging to the group Basidiomycota,[346] but this interpretation was challenged by Selosse et al. (2017).[347] Genus includes new species S. orchiphilus.

Syracosphaera antiqua[343]

Sp. nov

Valid

Bown, Lees & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

Syracosphaera repagula[343]

Sp. nov

Valid

Bown, Lees & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

Tarburina[348]

Gen. et sp. nov

Valid

Schlagintweit, Rashidi & Barani

Late Cretaceous (late Maastrichtian)

Tarbur Formation

  Iran

A foraminifer. Genus includes new species T. zagrosiana.

Taruma[339]

Gen. et sp. nov

Valid

Morais, Fairchild & Lahr in Morais et al.

Neoproterozoic

Urucum Formation

  Brazil

A vase-shaped microfossil. Genus includes new species T. rata.

Tortolithus foramen[343]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

  Tanzania

A haptophyte of uncertain phylogenetic placement.

Veteronostocale grandis[325]

Sp. nov

Valid

Shi & Feng in Shi et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

  China

A member of Cyanobacteria belonging to the group Nostocales.

Windipila[349]

Gen. et sp. nov

Valid

Krings & Harper

Early Devonian

Windyfield chert

  United Kingdom

A fungus described on the basis of a reproductive unit. Genus includes new species W. spinifera.

Xiaohongyuia[350]

Gen. et sp. nov

Valid

Shi & Feng in Shi et al.

Late Paleoproterozoic

Dahongyu Formation

  China

A probable eukaryotic microfossil. Genus includes new species X. sinica.

General paleontology

edit

Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.

  • A study on the links between changes in the composition of exposed continental crust and oxygenation of the atmosphere in the Precambrian is published by Smit & Mezger (2017).[351]
  • A review of the progress in modeling the Snowball Earth atmosphere, cryosphere, hydrosphere and lithosphere, specifically as it pertains to Cryogenian geology and geobiology, is published by Hoffman et al. (2017).[352]
  • A revised record of fossil eukaryotic steroids during the Neoproterozoic is presented by Brocks et al. (2017), who argue that bacteria were the only notable primary producers in the oceans before the Cryogenian, and that rapid rise of marine planktonic algae to domination occurred in the narrow time interval between the Sturtian and Marinoan glaciations, 659–645 million years ago, likely driving the subsequent radiation of animals in the Ediacaran period.[353]
  • A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).[354]
  • A study on the water column geochemistry of the Yangtze Sea during the Ediacaran-Cambrian transition and its implications for the relationship between ocean oxygenation and Early Cambrian animal diversification is published by Zhang et al. (2017).[355]
  • A study on the links between the expansion of siliceous sponges and seawater oxygenation during the Ediacaran–Cambrian transition is published by Tatzel et al. (2017).[356]
  • A study on the factors influencing marine invertebrate diversity dynamics through the Phanerozoic is published by Cermeño et al. (2017).[357]
  • Edwards et al. (2017) identify a strong temporal link between the rising atmospheric oxygen levels and the Great Ordovician Biodiversification Event.[358]
  • A study on the impact of the drawdown of atmospheric carbon dioxide (caused by burial of organic carbon leading to the formation of coal) on the climate around the Carboniferous/Permian boundary is published by Feulner (2017).[359]
  • A comprehensive reconstruction of the Permian (Lopingian) Bletterbach Biota (Italy) and a review of other best-known Lopingian terrestrial associations containing both vertebrate and plant remains is published by Bernardi et al. (2017).[360]
  • A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, identifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).[361]
  • Viglietti, Rubidge & Smith (2017) review the tectonic setting of the Late Permian Karoo Basin (South Africa), provide an updated basin development model, and interpret their findings as indicating that the climatic changes associated with the Permian–Triassic extinction event were occurring much lower in the stratigraphy (and thus earlier) than previously documented.[362]
  • A summary of knowledge of the impact of Permian-Triassic mass extinction on reef ecosystems, and on their recovery after this extinction, is presented by Martindale, Foster & Velledits (2017).[363]
  • A study on benthic invertebrate communities from the Lower Triassic Werfen Formation (Italy), aiming to test whether carbon isotope perturbations during the Early Triassic were associated with biotic crises that impeded benthic recovery after the Permian–Triassic extinction event, is published by Foster et al. (2017).[364]
  • A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).[365]
  • A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).[366]
  • A study on the oxygen levels in Earth's oceans during and after the Triassic–Jurassic extinction event as indicated by uranium isotopes in shallow-marine limestones in the Lombardy Basin (northern Italy) is published by Jost et al. (2017).[367]
  • A high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America and a study on the stratigraphic ranges of North American dinosaurs is published by Fowler (2017).[368]
  • A study on the impact that large amounts of soot injected into the atmosphere during the Cretaceous–Paleogene extinction event (probably caused by global wildfires) had on the climate is published by Bardeen et al. (2017).[369]
  • A study estimating the decrease of the air temperature and the duration of the climate cooling caused by Chicxulub impact at the end of the Cretaceous is published by Brugger, Feulner & Petri (2017).[370]
  • A study on the volume of the climate-active gases released from sedimentary rocks as a result of the Chicxulub impact, as well as on their effect on the global climate, is published by Artemieva, Morgan & Expedition 364 Science Party (2017).[371]
  • Kaiho & Oshima (2017) calculate the amounts of stratospheric soot and sulfate formed by a virtual asteroid impact at various global locations, and conclude that the Cretaceous–Paleogene extinction event was caused by the Chicxulub impact happening at the hydrocarbon-rich, sulfate-dominated area on the Earth's surface, and that an impact at a low–medium hydrocarbon area on Earth would be unlikely to cause mass extinction.[372]
  • A study on the data sets of molluscan fossils from the Cretaceous–Paleogene of the Seymour Island (Antarctica) is published by Tobin (2017), who identifies possible evidence of two separate extinction events, one prior to the Cretaceous–Paleogene boundary, and one simultaneous with the bolide impact at the Cretaceous–Paleogene boundary.[373]
  • A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).[374]
  • A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).[375]
  • A study on the preservation of skin and keratinous integumentary structures in tetrapod fossils through time is published by Eliason et al. (2017).[376]
  • A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).[377]
  • A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).[378]
  • A study on the evolution of the shape of brain and skull roof during the transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds is published by Fabbri et al. (2017).[379]
  • A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).[380]
  • Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.[381]
  • A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).[382]
  • A new tetrapod assemblage from the lowermost levels of the Triassic Chañares Formation (Argentina), dominated by fossils of Tarjadia ruthae, dicynodonts and cynodonts, and also including fossils of other pseudosuchians and rhynchosaurs, is described by Ezcurra et al. (2017), who also reinterpret Tarjadia ruthae and Archeopelta arborensis as erpetosuchid archosaurs.[383]
  • A study on the cosmopolitanism of terrestrial amniote faunas in the aftermath of the Permian–Triassic extinction event and Triassic–Jurassic extinction event is published by Button et al. (2017).[384]
  • Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.[385]
  • A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).[386]
  • A study evaluating the utility of oxygen-isotope compositions of fossilised foraminifera tests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, is published by Bernard et al. (2017).[387][388][389]
  • A study on the glacial development and environmental changes in the Aurora Subglacial Basin (Antarctica) throughout the Cenozoic based on geophysical and geological evidence is published by Gulick et al. (2017).[390]
  • A study on the onset duration of the Paleocene–Eocene Thermal Maximum is published by Kirtland Turner et al. (2017).[391]
  • A study on the relationship between volcanic activity in the North Atlantic Igneous Province and the Paleocene–Eocene Thermal Maximum is published by Gutjahr et al. (2017).[392]
  • A study on the environment in the area corresponding to the present-day Amazon basin in the Miocene as indicated by data from the shark and ray fossils from the Pirabas Formation (Brazil) is published by Aguilera et al. (2017).[393]
  • A study on the impact of the Messinian salinity crisis on Mediterranean magmatism is published by Sternai et al. (2017).[394]
  • A study on the changes of ice sheets volume and sea level during the late Pliocene is published by de Boer et al. (2017).[395]
  • Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.[396]
  • A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).[397]
  • Tierney, deMenocal & Zander (2017) reconstruct temperature and aridity in the Horn of Africa region spanning the past 200,000 years.[398]
  • A vertebrate fauna from the Pleistocene and Holocene of Sumba (Indonesia) is described by Turvey et al. (2017).[399]
  • A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.[400]
  • Hagstrum et al. (2017) report impact-related microspherules and elevated platinum concentrations found in fine-grained sediments retained within Late Pleistocene bison and mammoth skull fragments from Alaska and Yukon, and interpret the findings as evidence of repeated airbursts and ground/ice impacts associated with multiple episodes of cosmic impact.[401]
  • A study on changes in landscape moisture in the rangelands in Europe, Siberia and the Americas during the late Pleistocene as indicated by data from the bones of megaherbivores is published by Rabanus-Wallace et al. (2017).[402]

References

edit
  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Qiang Ou; Jian Han; Zhifei Zhang; Degan Shu; Ge Sun; Georg Mayer (2017). "Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity". Proceedings of the National Academy of Sciences of the United States of America. 114 (33): 8835–8840. Bibcode:2017PNAS..114.8835O. doi:10.1073/pnas.1701650114. PMC 5565419. PMID 28760981.
  3. ^ Baichuan Duan; Xi-Ping Dong; Luis Porras; Kelly Vargas; John A. Cunningham; Philip C. J. Donoghue (2017). "The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan". Proceedings of the Royal Society B: Biological Sciences. 284 (1869): 20172188. doi:10.1098/rspb.2017.2188. PMC 5745419. PMID 29237861.
  4. ^ Aaron D. Sappenfield; Lidya G. Tarhan; Mary L. Droser (2017). "Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach?". Geological Magazine. 154 (4): 859–874. Bibcode:2017GeoM..154..859S. doi:10.1017/S0016756816000443. S2CID 133404332.
  5. ^ Jerzy Dzik; Andrzej Baliński; Yuanlin Sun (2017). "The origin of tetraradial symmetry in cnidarians". Lethaia. 50 (2): 306–321. doi:10.1111/let.12199.
  6. ^ Guangxu Wang; Renbin Zhan; Bing Huang; Ian G. Percival (2017). "Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution". Geological Magazine. 154 (4): 829–836. Bibcode:2017GeoM..154..829W. doi:10.1017/S0016756816000406. S2CID 132435154.
  7. ^ Chiara Tornabene; Rowan C. Martindale; Xingchen T. Wang; Morgan F. Schaller (2017). "Detecting Photosymbiosis in Fossil Scleractinian Corals". Scientific Reports. 7 (1): Article number 9465. Bibcode:2017NatSR...7.9465T. doi:10.1038/s41598-017-09008-4. PMC 5572714. PMID 28842582.
  8. ^ a b c d e Marie Coen-Aubert (2017). "Givetian rugose corals from the Zemmour in Mauritania". Geologica Belgica. 20 (3–4): 161–180. doi:10.20341/gb.2017.009.
  9. ^ Yong Yi Zhen; Guangxu Wang; Ian G. Percival (2017). "Conodonts and tabulate corals from the Upper Ordovician Angullong Formation of central New South Wales, Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (2): 141–168. doi:10.1080/03115518.2016.1185869. S2CID 133036752.
  10. ^ Shuji Niko; Masayuki Fujikawa (2017). "Visean (Early Carboniferous) tabulate corals from the Akiyoshi Limestone Group, Yamaguchi Prefecture". Bulletin of the Akiyoshi-dai Museum of Natural History. 52: 1–4.
  11. ^ a b c Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 5. The Family Bothrophyllidae Fomichev, 1953". Acta Geologica Polonica. 67 (2): 249–298. Bibcode:2017AcGeP..67..249F. doi:10.1515/agp-2017-0013.
  12. ^ John S. Peel (2017). "A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia". Journal of Paleontology. 91 (5): 871–882. Bibcode:2017JPal...91..871P. doi:10.1017/jpa.2017.49. S2CID 134826884.
  13. ^ Wei-hua Liao; Xue-ping Ma (2017). "Devonian corals from Zhaotong, NE Yunnan (2)——Givetian rugose corals". Acta Palaeontologica Sinica. 56 (1): 68–81. Archived from the original on 2020-11-27. Retrieved 2017-05-25.
  14. ^ a b c d e f Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 6. The Family Aulophyllidae Dybowski, 1873". Acta Geologica Polonica. 67 (4): 459–514. Bibcode:2017AcGeP..67..459F. doi:10.1515/agp-2017-0028.
  15. ^ a b c E. W. Bamber; S. Rodríguez; B. C. Richards; B. L. Mamet (2017). "Uppermost Viséan and Serpukhovian (Mississippian) rugose corals and biostratigraphy, Canadian Cordillera". Palaeontographica Canadiana. 36: 1–169. ISBN 978-1-897095-80-5.
  16. ^ a b c d e Galina K. Melnikova; Ewa Roniewicz (2017). "Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia". Palaeoworld. 26 (1): 124–148. doi:10.1016/j.palwor.2016.01.001.
  17. ^ Bernard Lathuilière; Sylvain Charbonnier; Jean-Michel Pacaud (2017). Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals (PDF). Vol. 89. pp. 133–150. ISBN 978-3-946705-00-0. {{cite book}}: |journal= ignored (help)
  18. ^ Sergio Rodríguez; Ian D. Somerville; Ismail Said (2017). "New species of the rugose coral genus Lithostrotion Fleming in the upper Viséan from the Azrou-Khenifra Basin (Morocco)" (PDF). Spanish Journal of Palaeontology. 32 (1): 27–34.
  19. ^ Stephen D. Cairns (2017). "New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic". Journal of Paleontology. 91 (3): 407–416. Bibcode:2017JPal...91..407C. doi:10.1017/jpa.2016.83. S2CID 55731989.
  20. ^ Shuji Niko; Shigeyuki Suzuki; Eiji Taguchi (2017). "Petrophyllia niimiensis, a new Miocene species of scleractinian coral from the Bihoku Group in Niimi City, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 52: 5–9.
  21. ^ Shuji Niko (2017). "Early Permian tabulate corals from the Funafuseyama Limestone, Gifu Prefecture, Japan" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 43: 19–25.
  22. ^ Yunhuan Liu; Tiequan Shao; Huaqiao Zhang; Qi Wang; Yanan Zhang; Cheng Chen; Yongchun Liang; Jiaqi Xue (2017). "A new scyphozoan from the Cambrian Fortunian Stage of South China". Palaeontology. 60 (4): 511–518. Bibcode:2017Palgy..60..511L. doi:10.1111/pala.12306.
  23. ^ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2017). "Middle Devonian tabulate corals from the Kotaki area, Niigata Prefecture, central Japan". Science Reports of Niigata University. (Geology). 32: 25–31. hdl:10191/47651.
  24. ^ Xing Wang; Jian Han; Jean Vannier; Qiang Ou; Xiaoguang Yang; Kentaro Uesugi; Osamu Sasaki; Tsuyoshi Komiya (2017). "Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China". Palaeontology. 60 (6): 853–867. Bibcode:2017Palgy..60..853W. doi:10.1111/pala.12320. S2CID 90297513.
  25. ^ Rosemarie Christine Baron-Szabo (2017). "Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian" (PDF). Jahrbuch der Geologischen Bundesanstalt. 157 (1–4): 241–260.
  26. ^ Andrzej Baliński; Yuanlin Sun (2017). "Early Ordovician black corals from China". Bulletin of Geosciences. 92 (1): 1–12. doi:10.3140/bull.geosci.1632.
  27. ^ Marcus M. Key, Jr.; Matúš Hyžný; Erfan Khosravi; Natália Hudáčková; Ninon Robin; Majid Mirzaie Ataabadi (2017). "Bryozoan epibiosis on fossil crabs: a rare occurrence from the Miocene of Iran". PALAIOS. 32 (8): 491–505. Bibcode:2017Palai..32..491K. doi:10.2110/palo.2017.040. S2CID 134042609.
  28. ^ a b Andrej Ernst; Daniel Vachard (2017). "Middle Pennsylvanian bryozoans of Cerros de Tule, Sonora, Mexico". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 11–38. doi:10.1127/njgpa/2017/0660.
  29. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2017). "Bryozoans from the lower Miocene Chipola Formation, Calhoun County, Florida, USA". Bulletin of the Florida Museum of Natural History. 53 (4): 97–200. doi:10.58782/flmnh.pgmm1110.
  30. ^ a b c d e Silviu O. Martha; Birgit Niebuhr; Joachim Scholz (2017). "Cheilostome Bryozoen" (PDF). Geologica Saxonica. 62: 11–52. Archived from the original (PDF) on 2017-09-23. Retrieved 2017-09-22.
  31. ^ Andrej Ernst; Zoya Tolokonnikova; Edouard Poty; Bernard Mottequin (2017). "A bryozoan fauna from the Mississippian (Tournaisian and Viséan) of Belgium". Geobios. 50 (2): 105–121. Bibcode:2017Geobi..50..105E. doi:10.1016/j.geobios.2017.02.002.
  32. ^ a b c d e f g h i Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2017). "Fenestrate Bryozoa of the Moniello Formation (Lower-Middle Devonian, NW Spain)". Bulletin of Geosciences. 92 (2): 153–183. doi:10.3140/bull.geosci.1668.
  33. ^ a b c d Emanuela Di Martino; Paul D. Taylor; Laura J. Cotton; Paul N. Pearson (2017). "First bryozoan fauna from the Eocene–Oligocene transition in Tanzania" (PDF). Journal of Systematic Palaeontology. 16 (3): 225–243. doi:10.1080/14772019.2017.1284163. S2CID 89671986.
  34. ^ a b Emanuela Di Martino; Paul D. Taylor; Dennis P. Gordon; Lee Hsiang Liow (2017). "New bryozoan species from the Pleistocene of the Wanganui Basin, North Island, New Zealand". European Journal of Taxonomy (345): 1–15. doi:10.5852/ejt.2017.345.
  35. ^ a b Andrej Ernst; Peter Königshof; Ali Bahrami; Mehdi Yazdi; Iliana Boncheva (2017). "A Late Devonian (Frasnian) bryozoan fauna from central Iran". Palaeobiodiversity and Palaeoenvironments. 97 (3): 541–552. doi:10.1007/s12549-016-0269-5. S2CID 131810146.
  36. ^ a b L. A. Viskova; A. V. Pakhnevich (2017). "Bryozoan (Stenolaemata) records from the upper Callovian (Middle Jurassic) of the Moscow region". Paleontological Journal. 51 (3): 258–263. doi:10.1134/S0031030117030121. S2CID 133921567.
  37. ^ M. A. Sonar; R. V. Pawar (2017). "Some fossil species of catenicellid and schizoporelloid bryozoans from the Cenozoic sediments of western Kachchh, Gujarat, India". Journal of the Palaeontological Society of India. 62 (1): 31–38. doi:10.1177/0971102320170103.
  38. ^ Zoya Tolokonnikova; Jiří Kalvoda; Tomáš Kumpan (2017). "An early Tournaisian (Mississippian) bryozoan fauna from the Moravian Karst (Rhenohercynian Zone, Czech Republic)". Geobios. 50 (4): 341–348. Bibcode:2017Geobi..50..341T. doi:10.1016/j.geobios.2017.06.006.
  39. ^ a b c Kamil Zágoršek; Mehdi Yazdi; Ali Bahrami (2017). "Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 109–118. doi:10.1127/njgpa/2017/0631.
  40. ^ a b Paul D. Taylor; Silviu O. Martha (2017). "Cenomanian cheilostome bryozoans from Devon, England". Annales de Paléontologie. 103 (1): 19–31. Bibcode:2017AnPal.103...19T. doi:10.1016/j.annpal.2016.11.002.
  41. ^ Silviu O. Martha; Paul D. Taylor (2017). "The oldest erect cheilostome bryozoan: Jablonskipora gen. nov. from the upper Albian of south-west England". Papers in Palaeontology. 4 (1): 55–66. doi:10.1002/spp2.1097. S2CID 91058350.
  42. ^ a b c Laís V. Ramalho; Vladimir A. Távora; Kamil Zagorsek (2017). "New records of the Bryozoan Metrarabdotos from the Pirabas Formation (Lower Miocene), Pará State, Brazil". Palaeontologia Electronica. 20 (2): Article number 20.2.32A. doi:10.26879/704.
  43. ^ Paul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera". Journal of Natural History. 52 (25–26): 1657–1721. doi:10.1080/00222933.2018.1481235. S2CID 89706861.
  44. ^ Patrick N. Wyse Jackson; Andrej Ernst; Juan L. Suárez Andrés (2017). "Articulation in the Family Rhabdomesidae (Cryptostomata: Bryozoa) from the Mississippian of Ireland". Irish Journal of Earth Sciences. 35: 35–44. doi:10.3318/ijes.2017.35.35. S2CID 134697040.
  45. ^ a b Petr V. Fedorov; Anna V. Koromyslova; Silviu O. Martha (2017). "The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae". PalZ. 91 (3): 353–373. doi:10.1007/s12542-017-0351-y. S2CID 135228988.
  46. ^ Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2017). "First record of a fossil selenariid bryozoan in South America". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 365–368. doi:10.1080/03115518.2017.1283054. hdl:11336/47794. S2CID 132337410.
  47. ^ Dennis P. Gordon; Kjetil L. Voje; Paul D. Taylor (2017). "Living and fossil Steginoporellidae (Bryozoa: Cheilostomata) from New Zealand". Zootaxa. 4350 (2): 345–362. doi:10.11646/zootaxa.4350.2.9. PMID 29245558.
  48. ^ Seth Finnegan; Christian M. Ø. Rasmussen; David A. T. Harper (2017). "Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods". Biology Letters. 13 (9): 20170400. doi:10.1098/rsbl.2017.0400. PMC 5627174. PMID 28954854.
  49. ^ Claudio Garbelli; Lucia Angiolini; Shu-zhong Shen (2017). "Biomineralization and global change: A new perspective for understanding the end-Permian extinction". Geology. 45 (1): 19–22. Bibcode:2017Geo....45...19G. doi:10.1130/G38430.1.
  50. ^ a b c C.B. Skovsted; I. Knight; U. Balthasar; W.D. Boyce (2017). "Depth related brachiopod faunas from the lower Cambrian Forteau Formation of southern Labrador and western Newfoundland, Canada". Palaeontologia Electronica. 20 (3): Article number 20.3.54A. doi:10.26879/775. hdl:10026.1/11606.
  51. ^ József Pálfy; Zsófia Kovács; Gregory D. Price; Attila Vörös; Gary G. Johannson (2017). "A new occurrence of the Early Jurassic brachiopod Anarhynchia from the Canadian Cordillera confirms its membership in chemosynthesis-based ecosystems" (PDF). Canadian Journal of Earth Sciences. 54 (12): 1179–1193. Bibcode:2017CaJES..54.1179P. doi:10.1139/cjes-2017-0179. hdl:1807/79681.
  52. ^ a b c d e f g h Maria Liljeroth; David A. T. Harper; Hilary Carlisle; Arne T. Nielsen (2017). Fossils and Strata, Number 62, Ordovician rhynchonelliformean brachiopods from Co. Waterford, SE Ireland: palaeobiogeography of the Leinster Terrane. Wiley-Blackwell. pp. 1–164. doi:10.1002/9781119412595. ISBN 978-1-119-41255-7.
  53. ^ a b José F. Baeza-Carratalá; Matías Reolid; Fernando García Joral (2017). "New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event". Bulletin of Geosciences. 92 (2): 233–256. doi:10.3140/bull.geosci.1631. hdl:10045/68270.
  54. ^ a b V. V. Baranov (2017). "New brachiopods from the Ordovician of northeastern Russia". Paleontological Journal. 51 (1): 47–52. doi:10.1134/S0031030117010038. S2CID 132869480.
  55. ^ A. A. Madison (2017). "To the revision of the Upper Ordovician Bilobia Cooper (Strophomenida, Brachiopoda)". Paleontological Journal. 51 (4): 368–373. doi:10.1134/S0031030117040062. S2CID 90654526.
  56. ^ a b A. M. Popov; Yu. D. Zakharov (2017). "Olenekian brachiopods from the Kamenushka River basin, South Primorye: New data on the brachiopod recovery after the end-Permian mass extinction". Paleontological Journal. 51 (7): 735–745. doi:10.1134/S0031030117070085. S2CID 89881140.
  57. ^ a b Maria Aleksandra Bitner; Arnold Müller (2017). "Late Eocene (Priabonian) brachiopod fauna from Dnipropetrovsk, eastern Ukraine". Bulletin of Geosciences. 92 (2): 211–231. doi:10.3140/bull.geosci.1661.
  58. ^ a b Danièle Gaspard (2017). "Deux nouvelles espèces de brachiopodes rhynchonelliformes de l'Albien stratotypique (Bassin de Paris) – mise au point". Annales de Paléontologie. 103 (2): 93–100. Bibcode:2017AnPal.103...93G. doi:10.1016/j.annpal.2017.04.004.
  59. ^ a b c d e f g Dan Lü; Xue-Ping Ma (2017). "Small-sized brachiopods from the Upper Frasnian (Devonian) of central Hunan, China". Palaeoworld. 26 (3): 456–478. doi:10.1016/j.palwor.2017.01.005.
  60. ^ Jun-ichi Tazawa; Hiroaki Inose; Naotomo Kaneko (2017). "Cyrtospirifer ainosawensis sp. nov., from the Upper Devonian Ainosawa Formation, Soma, Abukuma Mountains, northeastern Japan". The Journal of the Geological Society of Japan. 123 (8): 653–656. doi:10.5575/geosoc.2017.0011.
  61. ^ Jun-ichi Tazawa (2017). "Discovery of Cyrtospirifer (Late Devonian Brachiopoda) from Choanji in the South Kitakami Belt, northeastern Japan". The Journal of the Geological Society of Japan. 123 (2): 101–105. doi:10.5575/geosoc.2016.0059.
  62. ^ a b c L.E. Popov; L.R.M. Cocks (2017). "The World's second oldest strophomenoid-dominated benthic assemblage in the first Dapingian (Middle Ordovician) brachiopod fauna identified from Iran". Journal of Asian Earth Sciences. 140: 1–12. Bibcode:2017JAESc.140....1P. doi:10.1016/j.jseaes.2017.03.007.
  63. ^ T.N. Smirnova; G.T. Ushatinskaya; E.A. Zhegallo; I.V. Panchenko (2017). "Shell microstructure of Discinisca suborbicularis sp. nov. (Brachiopoda, Lingulata) from the Upper Jurassic of Western Siberia". Paleontological Journal. 51 (5): 480–490. doi:10.1134/S0031030117050124. S2CID 135081073.
  64. ^ T. N. Smirnova; G. T. Ushatinskaya; E. A. Zhegallo; I. V. Panchenko (2017). "First records of brachiopods of the family Discinidae (Class Lingulata) from the Upper Jurassic of West Siberia". Paleontological Journal. 51 (2): 155–160. doi:10.1134/S0031030117020150. S2CID 132978017.
  65. ^ Paul Copper; Jisuo Jin (2017). "Early athyride brachiopod evolution through the Ordovician-Silurian mass extinction and recovery, Anticosti Island, eastern Canada". Journal of Paleontology. 91 (6): 1123–1147. Bibcode:2017JPal...91.1123C. doi:10.1017/jpa.2017.74. S2CID 134708988.
  66. ^ a b Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Zhiliang Zhang; Zhifei Zhang (2017). "Unusual pitted Ordovician brachiopods from the East Baltic: the significance of coarsely pitted ornamentations in linguliforms". Papers in Palaeontology. 3 (3): 387–399. doi:10.1002/spp2.1080. S2CID 134310799.
  67. ^ a b "Archived copy". Archived from the original on 2020-03-17. Retrieved 2017-05-11.{{cite web}}: CS1 maint: archived copy as title (link)
  68. ^ a b c d Shuzhong Shen; Yugan Jin; Yan Zhang; Elizabeth A. Weldon (2017). "Permian brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan (eds.). Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 651–881.
  69. ^ Adam T. Halamski; Amine Cherif (2017). "Oxfordian brachiopods from the Saïda and Frenda mountains (Tlemcenian Domain, north-western Algeria)". Annales Societatis Geologorum Poloniae. 87 (2): 141–156. doi:10.14241/asgp.2017.006.
  70. ^ Jisuo Jin; Lars E. Holmer (2017). "Pentameroid brachiopod Karlsorus new genus from the upper Wenlock (Silurian) Slite Beds, Gotland, Sweden". Journal of Paleontology. 91 (5): 911–918. Bibcode:2017JPal...91..911J. doi:10.1017/jpa.2017.46. S2CID 134495311.
  71. ^ a b c Bernard Mottequin; Eric Simon (2017). "New insights on Tournaisian–Visean (Carboniferous, Mississippian) athyridide, orthotetide, rhynchonellide, and strophomenide brachiopods from southern Belgium". Palaeontologia Electronica. 20 (2): Article number 20.2.28A. doi:10.26879/758.
  72. ^ Fengyu Wang; Jing Chen; Xu Dai; Haijun Song (2017). "A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction". Papers in Palaeontology. 3 (3): 425–439. doi:10.1002/spp2.1083. S2CID 134867277.
  73. ^ a b Tatiana L. Modzalevskaya; Leonid E. Popov; Mansoureh Ghobadi Pour; Michail S. Dufour (2017). "First report on the Early Devonian (Lochkovian) brachiopods from eastern Central Pamirs, Tajikistan". Journal of Asian Earth Sciences. 138: 427–438. Bibcode:2017JAESc.138..427M. doi:10.1016/j.jseaes.2017.02.030.
  74. ^ Yong-Qin Mao; Yuan-Long Zhao; Cheng-Wen Wang; Timothy Topper (2017). "A fresh look at Nisusia Walcott, 1905 from the Cambrian Kaili Formation in Guizhou". Palaeoworld. 26 (1): 12–24. doi:10.1016/j.palwor.2016.03.001.
  75. ^ a b David A.T. Harper; Matthew A. Parkes; Zhan Ren-Bin (2017). "Late Ordovician deep-water brachiopod fauna from Raheen, Waterford Harbour, Ireland" (PDF). Irish Journal of Earth Sciences. 35: 1–18. doi:10.3318/ijes.2017.35.1. S2CID 134598008.
  76. ^ G.A. Cisterna; A.F. Sterren; O. López Gamundí; M.M. Vergel (2017). "Carboniferous postglacial faunas in the late Serpukhovian–Bashkirian interval of central-western Argentina". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 413–431. doi:10.1080/03115518.2017.1299795. hdl:11336/44723. S2CID 133077581.
  77. ^ Urszula Radwańska (2017). "Selected Oxfordian brachiopods from Zalas (Cracow Upland, Poland)". Acta Geologica Polonica. 67 (3): 423–430. Bibcode:2017AcGeP..67..433R. doi:10.1515/agp-2017-0021.
  78. ^ Mohammad-Reza Kebria-Ee Zadeh; Leonid E. Popov; Mansoureh Ghobadi Pour (2017). "A new orthide brachiopod genus from the Middle Ordovician of the Alborz Mountains, Iran". GFF. 139 (4): 327–332. doi:10.1080/11035897.2017.1347197. S2CID 135028500.
  79. ^ Debahuti Mukherjee; Sabyasachi Shome (2017). "Tithonian brachiopods from the Kachchh and Jaisalmer basins, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 187–199. doi:10.1127/njgpa/2017/0676.
  80. ^ Jenaro L. García-Alcalde; Zarela Herrera (2017). "Tectogonotoechia rivasi n. sp. A new lower Pragian Celtiberian (Spain) Ancystrorhynchoidea rhynchonellid brachiopod" (PDF). Spanish Journal of Palaeontology. 32 (1): 115–128.
  81. ^ Howard R. Feldman (2017). "Tunethyris blodgetti sp. nov. (Brachiopoda, Terebratulida) from the Middle Triassic of the Makhtesh Ramon, southern Israel". Annales Societatis Geologorum Poloniae. 87 (1): 89–99. doi:10.14241/asgp.2017.004.
  82. ^ M. Mergl; İ. Hoşgör; I. O. Yilmaz; S. Zamora; J. Colmenar (2017). "Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana". Historical Biology: An International Journal of Paleobiology. 30 (7): 1015–1029. doi:10.1080/08912963.2017.1327531. S2CID 134763114.
  83. ^ Shuzhong Shen; Li Qiao; Yan Zhang; Yuanlin Sun; Yugan Jin (2017). "Carboniferous brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan (eds.). Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 559–649.
  84. ^ Sarah L. Sheffield; Colin D. Sumrall (2017). "Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology". Journal of Paleontology. 91 (4): 755–766. Bibcode:2017JPal...91..755S. doi:10.1017/jpa.2016.159. S2CID 133298313.
  85. ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic". Geology. 45 (6): 531–534. Bibcode:2017Geo....45..531T. doi:10.1130/G38909.1.
  86. ^ Daniel B. Blake (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e417. Bibcode:2017Geo....45E.417B. doi:10.1130/G39163C.1.
  87. ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e418. Bibcode:2017Geo....45E.418T. doi:10.1130/G39210Y.1.
  88. ^ Mariusz A. Salamon; Przemysław Gorzelak (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e419. Bibcode:2017Geo....45E.419S. doi:10.1130/G39196C.1.
  89. ^ Ben Thuy (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e420. Bibcode:2017Geo....45E.420T. doi:10.1130/G39221Y.1.
  90. ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (11): e431. Bibcode:2017Geo....45E.431H. doi:10.1130/G39575C.1.
  91. ^ Ben Thuy; Hans H. Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (11): e432. Bibcode:2017Geo....45E.432T. doi:10.1130/G39684Y.1.
  92. ^ David F. Wright (2017). "Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)". Journal of Paleontology. 91 (4): 799–814. Bibcode:2017JPal...91..799W. doi:10.1017/jpa.2016.141. S2CID 5018503.
  93. ^ Selina R. Cole (2017). "Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata)". Journal of Paleontology. 91 (4): 815–828. Bibcode:2017JPal...91..815C. doi:10.1017/jpa.2016.137. S2CID 90459044.
  94. ^ David F. Wright; William I. Ausich; Selina R. Cole; Mark E. Peter; Elizabeth C. Rhenberg (2017). "Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata)". Journal of Paleontology. 91 (4): 829–846. Bibcode:2017JPal...91..829W. doi:10.1017/jpa.2016.142. S2CID 13806992.
  95. ^ David F. Wright (2017). "Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids". Scientific Reports. 7 (1): Article number 13745. Bibcode:2017NatSR...713745W. doi:10.1038/s41598-017-13979-9. PMC 5653864. PMID 29062117.
  96. ^ Elizabeth G. Clark; Bhart-Anjan S. Bhullar; Simon A. F. Darroch; Derek E. G. Briggs (2017). "Water vascular system architecture in an Ordovician ophiuroid". Biology Letters. 13 (12): 20170635. doi:10.1098/rsbl.2017.0635. PMC 5746540. PMID 29212753.
  97. ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2017). "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway". PALAIOS. 32 (4): 218–230. Bibcode:2017Palai..32..218K. doi:10.2110/palo.2016.079. S2CID 131975877.
  98. ^ Aaron W. Hunter; Neal L. Larson; Jamie Brezina (2018). "Comment to Kato et al. (2017), "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". PALAIOS. 33 (6): 282–283. Bibcode:2018Palai..33..282H. doi:10.2110/palo.2017.071. S2CID 133937083.
  99. ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2018). "Reply to comment on Kato et al. (2017) "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". PALAIOS. 33 (6): 284–285. Bibcode:2018Palai..33..284K. doi:10.2110/palo.2018.028. S2CID 134000894.
  100. ^ Mohamed Said M. Ali (2017). "First Record of a New Species of Amblypygus (Echinoidea) from the Middle Miocene of Mersa Matruh, Western Desert, Egypt". Paleontological Research. 21 (1): 44–53. doi:10.2517/2016PR016. S2CID 132772107.
  101. ^ a b c d e f Selina R. Cole; William I. Ausich; Jorge Colmenar; Samuel Zamora (2017). "Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain)". Journal of Paleontology. 91 (4): 715–734. Bibcode:2017JPal...91..715C. doi:10.1017/jpa.2016.135. hdl:20.500.12468/565. S2CID 132280262.
  102. ^ a b c d e f Hans Hess; Ben Thuy (2017). "Extraordinary diversity of feather stars (Echinodermata: Crinoidea: Comatulida) from a Lower Jurassic (Pliensbachian–Toarcian) rock reef of Feuguerolles (Normandy, France)". Swiss Journal of Palaeontology. 136 (2): 301–321. doi:10.1007/s13358-016-0122-5. S2CID 132449128.
  103. ^ a b Daniel B. Blake (2017). "Two new Carboniferous Asteroidea (Echinodermata) of the family Urasterellidae". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 284 (1): 65–73. doi:10.1127/njgpa/2017/0652.
  104. ^ a b c Mohamed Said M. Ali (2017). "Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt". Journal of African Earth Sciences. 133: 46–73. Bibcode:2017JAfES.133...46A. doi:10.1016/j.jafrearsci.2017.04.031.
  105. ^ a b c Timothy A.M. Ewin; Ben Thuy (2017). "Brittle stars from the British Oxford Clay: unexpected ophiuroid diversity on Jurassic sublittoral mud bottoms". Journal of Paleontology. 91 (4): 781–798. Bibcode:2017JPal...91..781E. doi:10.1017/jpa.2016.162. S2CID 132581349.
  106. ^ Patrick D. McDermott; Christopher R. C. Paul (2017). "Ateleocystites? lansae sp. nov. (Mitrata, Anomalocystitidae) from the Upper Ordovician of South Wales". Geological Journal. 52 (1): 1–13. doi:10.1002/gj.2712. S2CID 140153267.
  107. ^ Bálint Polonkai; Andreas Kroh; Ágnes Görög; Ildikó Selmeczi; Mihály Dunai; Emese Réka Bodor (2017). "First occurrence of echinoid genus Brissus in the Badenian (Middle Miocene) of Hungary and description of Brissus mihalyi n. sp". Földtani Közlöny. 147 (4): 383–398. doi:10.23928/foldt.kozl.2017.147.4.383.
  108. ^ Daniel B. Blake; Stephen K. Donovan; David A.T. Harper (2017). "A new Silurian ophiuroid from the west of Ireland" (PDF). Irish Journal of Earth Sciences. 35: 57–66. doi:10.3318/ijes.2017.35.57. S2CID 134782375.
  109. ^ Luis E. Silva-Martínez; Alberto Blanco-Piñón; Jesús A. de León-González; Hidalgo Rodríguez-Vela (2017). "New Echinoid (Spatangoida: Toxasterinidae) from the Campanian of Coahuila, Northeastern Mexico". Boletín de la Sociedad Geológica Mexicana. 69 (2): 371–384. doi:10.18268/BSGM2017v69n2a4.
  110. ^ a b Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2017). "A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids". Journal of Paleontology. 91 (4): 767–780. Bibcode:2017JPal...91..767T. doi:10.1017/jpa.2016.158. S2CID 29250459.
  111. ^ Jeffrey R. Thompson; Elizabeth Petsios; Eric H. Davidson; Eric M. Erkenbrack; Feng Gao; David J. Bottjer (2015). "Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid". Scientific Reports. 5: Article number 15541. Bibcode:2015NatSR...515541T. doi:10.1038/srep15541. PMC 4614444. PMID 26486232.
  112. ^ Elise Nardin; Bertrand Lefebvre; Oldřich Fatka; Martina Nohejlová; Libor Kašička; Miroslav Šinágl; Michal Szabad (2017). "Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic". Journal of Paleontology. 91 (4): 672–684. Bibcode:2017JPal...91..672N. doi:10.1017/jpa.2016.157. S2CID 132699375.
  113. ^ José Francisco Carrasco (2017). "Primera cita del género Globator (Echinoidea, Eoceno) en España. Nueva especie" (PDF). Batalleria. 25: 8–12.
  114. ^ a b Enric Forner i Valls (2017). "Equinoïdeus nous (Echinodermata: Echinoidea) del Campanià de Moyenne Moulouya, nord est del Marroc". Nemus: Revista de l'Ateneu de Natura. 7: 51–72.
  115. ^ Peter Müller; Gerhard Hahn (2017). "Grigopyrgus n. gen., a new agelacrinitid edrioasteroid genus from the Lower Devonian of the Westerwald: (Echinodermata, Rhenish Slate Mountains, Germany)". Mainzer Geowissenschaftliche Mitteilungen. 45: 93–102.
  116. ^ Derek E. G. Briggs; Derek J. Siveter; David J. Siveter; Mark D. Sutton; Imran A. Rahman (2017). "An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20171189. doi:10.1098/rspb.2017.1189. hdl:10044/1/53015. PMC 5597833. PMID 28904139.
  117. ^ Sarah L. Sheffield; William I. Ausich; Colin D. Sumrall (2017). "Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns". Canadian Journal of Earth Sciences. 55 (1): 1–7. doi:10.1139/cjes-2017-0160. hdl:1807/80500.
  118. ^ a b c Tony Sadler; Sarah K. Martin; Stephen J. Gallagher (2017). "Three new species of the echinoid genus Monostychia Laube, 1869 from Western Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (4): 464–473. doi:10.1080/03115518.2017.1282979. S2CID 90600580.
  119. ^ Mike Reich; James Sprinkle; Bertrand Lefebvre; Gertrud E. Rössner; Samuel Zamora (2017). "The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography". Journal of Paleontology. 91 (4): 735–754. Bibcode:2017JPal...91..735R. doi:10.1017/jpa.2017.7. hdl:20.500.12468/709. S2CID 135376365.
  120. ^ Stephen K. Donovan; Fiona E. Fearnhead (2017). "A Lower Devonian hexacrinitid crinoid (Camerata, Monobathrida) from south-west England". PalZ. 91 (2): 217–222. doi:10.1007/s12542-017-0344-x. S2CID 134913415.
  121. ^ a b Louis G. Zachos (2017). "Paleocene echinoid faunas of the eastern United States". Journal of Paleontology. 91 (5): 1001–1024. Bibcode:2017JPal...91.1001Z. doi:10.1017/jpa.2017.22. S2CID 134191333.
  122. ^ a b David F. Wright; Ursula Toom (2017). "New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata)". Palaeontology. 60 (6): 893–910. doi:10.1111/pala.12324.
  123. ^ S.V. Rozhnov; R.L. Parsley (2017). "A new cornute (Homalozoa: Echinodermata) from the Uppermost Middle Cambrian (Stage 3, Furongian) from northern Iran: its systematics and functional morphology". Paleontological Journal. 51 (5): 500–509. doi:10.1134/S0031030117050100. S2CID 133862520.
  124. ^ a b c Yingyan Mao; William I. Ausich; Yue Li; Jih-Pai Lin; Caihua Lin (2017). "New taxa and phyletic evolution of the Aeronian (Llandovery, Silurian) Petalocrinidae (Echinodermata, Crinoidea) in Guizhou, South China Block". Journal of Paleontology. 91 (3): 477–492. Bibcode:2017JPal...91..477M. doi:10.1017/jpa.2016.156. S2CID 91044529.
  125. ^ David R. Cordie; Brian J. Witzke (2017). "A New Crinoid Genus from the Middle Devonian of Iowa, USA (Camerata, Melocrinitidae)". Paleontological Research. 21 (1): 7–13. doi:10.2517/2016PR014. S2CID 132181687.
  126. ^ Samuel Zamora; Colin D. Sumrall; Xue-Jian Zhu; Bertrand Lefebvre (2017). "A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)". Geological Magazine. 154 (3): 465–475. Bibcode:2017GeoM..154..465Z. doi:10.1017/S001675681600011X. hdl:20.500.12468/771. S2CID 131161649.
  127. ^ Peter Müller; Gerhard Hahn (2017). "Edrioasteroidea from the Seifen Formation of the Westerwald, Rhenish Slate Mountains (Lower Devonian, Germany), part 2: Sumrallia rseiberti gen. et sp. nov". PalZ. 91 (4): 629–639. doi:10.1007/s12542-017-0356-6. S2CID 135233073.
  128. ^ Loïc Villier; Arnaud Brayard; Kevin G. Bylund; James F. Jenks; Gilles Escarguel; Nicolas Olivier; Daniel A. Stephen; Emmanuelle Vennin; Emmanuel Fara (2017). "Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids" (PDF). Journal of Systematic Palaeontology. 16 (5): 395–415. doi:10.1080/14772019.2017.1308972. S2CID 89854727.
  129. ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Prolonged co-existence of 'archaic' and 'modern' Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia". Journal of Systematic Palaeontology. 16 (11): 891–907. doi:10.1080/14772019.2017.1353549. S2CID 135162886.
  130. ^ Didier Néraudeau; Jean-Pierre Pineau; Jean-Christophe Dudicourt; Patrice Raboeuf (2017). "Ulphaceaster sarthacensis, nouveau genre et nouvelle espèce d'échinide Archiaciidae du Cénomanien (Sarthe, France)". Annales de Paléontologie. 103 (1): 87–91. Bibcode:2017AnPal.103...87N. doi:10.1016/j.annpal.2017.01.002.
  131. ^ Nils Schlüter; Frank Wiese (2017). "Late Cretaceous species of Vologesia (Echinoidea, Cassiduloida) from northern Spain". Zootaxa. 4306 (2): 261–270. doi:10.11646/zootaxa.4306.2.6.
  132. ^ Emilia Jarochowska; Viive Viira; Rein Einasto; Rafał Nawrot; Oskar Bremer; Peep Männik; Axel Munnecke (2017). "Conodonts in Silurian hypersaline environments: Specialized and unexpectedly diverse". Geology. 45 (1): 3–6. Bibcode:2017Geo....45....3J. doi:10.1130/G38492.1. S2CID 131974217.
  133. ^ Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017). "Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus". Palaeontology. 60 (4): 595–608. Bibcode:2017Palgy..60..595Z. doi:10.1111/pala.12305. hdl:2381/40480.
  134. ^ Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018). "Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.)". Palaeontology. 61 (5): 785–792. Bibcode:2018Palgy..61..785A. doi:10.1111/pala.12372.
  135. ^ Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018). "Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al.". Palaeontology. 61 (5): 793–796. Bibcode:2018Palgy..61..793P. doi:10.1111/pala.12387. hdl:2381/42406.
  136. ^ a b c Gustavo G. Voldman; Guillermo L. Albanesi; Gladys Ortega; María Eugenia Giuliano; Carlos Ruben Monaldi (2017). "New conodont taxa and biozones from the Lower Ordovician of the Cordillera Oriental, NW Argentina". Geological Journal. 52 (3): 394–414. Bibcode:2017GeolJ..52..394V. doi:10.1002/gj.2766. S2CID 131460368.
  137. ^ a b C. Giles Miller; Alan P. Heward; Angelo Mossoni; Ivan J. Sansom (2017). "Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts" (PDF). Journal of Systematic Palaeontology. 16 (7): 571–593. doi:10.1080/14772019.2017.1314985. S2CID 134576678.
  138. ^ Till Söte; Sven Hartenfels; Ralph Thomas Becker (2017). "Uppermost Famennian stratigraphy and facies development of the Reigern Quarry near Hachen (northern Rhenish Massif, Germany)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 633–654. doi:10.1007/s12549-017-0287-y. S2CID 134615450.
  139. ^ a b c d e f g h i j k l m n Xi-ping Dong; Huaqiao Zhang (2017). "Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China". Journal of Paleontology. 91 (S73): 1–89. Bibcode:2017JPal...91S...1D. doi:10.1017/jpa.2015.43.
  140. ^ a b N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2017). "Upper Devonian conodonts of northeastern European Russia". Paleontological Journal. 51 (10): 973–1165. doi:10.1134/S003103011710001X. S2CID 90202627.
  141. ^ Fernanda Serra; Nicolás A. Feltes; Miles A. Henderson; Guillermo L. Albanesi (2017). "Darriwilian (Middle Ordovician) conodont biofacies from the Central Precordillera of Argentina". Marine Micropaleontology. 130: 15–28. Bibcode:2017MarMP.130...15S. doi:10.1016/j.marmicro.2016.12.002. hdl:11336/44643.
  142. ^ a b c Pablo Plasencia; Ali Murat Kiliç; Aymon Baud; Milan Sudar; Francis Hirsch (2017). "The evolutionary trend of platform-denticulation in Middle Triassic Acuminate Gondolellidae (Conodonta)". Turkish Journal of Zoology. 42 (2): 187–197. doi:10.3906/zoo-1708-20.
  143. ^ a b c Y.D. Sun; X.T. Liu; J.X. Yan; B. Li; B. Chen; D.P.G. Bond; M.M. Joachimski; P.B. Wignall; X. Wang; X.L. Lai (2017). "Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 465, Part A: 42–63. Bibcode:2017PPP...465...42S. doi:10.1016/j.palaeo.2016.10.013.
  144. ^ Felix Lüddecke; Sven Hartenfels; Ralph Thomas Becker (2017). "Conodont biofacies of a monotonous middle Famennian pelagic carbonate succession (Upper Ballberg Quarry, northern Rhenish Massif)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 591–613. doi:10.1007/s12549-017-0288-x. S2CID 134191571.
  145. ^ Thomas J. Suttner; Erika Kido; Andreas W. W. Suttner (2017). "Icriodus marieae, a new icriodontid conodont species from the Middle Devonian". PalZ. 91 (1): 137–144. doi:10.1007/s12542-017-0337-9. PMC 5445598. PMID 28615752.
  146. ^ Nicholas J. Hogancamp; James E. Barrick (2017). "Ungrooved species of Idiognathodus from the lower Gzhelian (Pennsylvanian) Heebner Shale, Midcontinent North America, U.S.A." Micropaleontology. 62 (5): 385–53. Bibcode:2017MiPal..62..385H. doi:10.47894/mpal.62.5.04. S2CID 248382981.
  147. ^ Cassiane Negreiros Cardoso; Javier Sanz-López; Silvia Blanco-Ferrera (2017). "Pennsylvanian conodonts from the Tapajós Group (Amazonas Basin, Brazil)". Geobios. 50 (2): 75–95. Bibcode:2017Geobi..50...75C. doi:10.1016/j.geobios.2017.02.004.
  148. ^ Ke-Yi Hu; Yu-Ping Qi; Qiu-Lai Wang; Tamara I. Nemyrovska; Ji-Tao Chen (2017). "Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China". Palaeoworld. 26 (1): 64–82. doi:10.1016/j.palwor.2015.12.003.
  149. ^ Huaibao P. Liu; Stig M. Bergström; Brian J. Witzke; Derek E. G. Briggs; Robert M. McKay; Annalisa Ferretti (2017). "Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA". Journal of Paleontology. 91 (3): 493–511. Bibcode:2017JPal...91..493L. doi:10.1017/jpa.2016.155. hdl:11380/1114523. S2CID 132698401.
  150. ^ a b Nadezhda Izokh; Aleksandr Yazikov (2017). "Discovery of Early Carboniferous conodonts in Northern Kharaulakh Ranges (lower reaches of the Lena River, northeastern Siberia, Arctic Russia)". Revue de Micropaléontologie. 60 (2): 213–232. Bibcode:2017RvMic..60..213I. doi:10.1016/j.revmic.2017.03.001.
  151. ^ Shunxin Zhang; David M.S. Jowett; Christopher R. Barnes (2017). "Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands". Canadian Journal of Earth Sciences. 54 (9): 936–960. Bibcode:2017CaJES..54..936Z. doi:10.1139/cjes-2017-0023. hdl:1807/78295.
  152. ^ Yanlong Chen; Alexander Lukeneder (2017). "Late Triassic (Julian) conodont biostratigraphy of a transition from reefal limestones to deep-water environments on the Cimmerian terranes (Taurus Mountains, southern Turkey)". Papers in Palaeontology. 3 (3): 441–460. doi:10.1002/spp2.1082. S2CID 135222844.
  153. ^ a b Artem N. Plotitsyn; Andrey V. Zhuravlev (2017). "The new conodont species of Neopolygnathus and Polygnathus from the Tournaisian of the North Urals and Chernyshev Ridge" (PDF). Syktyvkar Palaeontological Miscellany. 8: 24–30.
  154. ^ Manuel Rigo; Michele Mazza; Viktor Karádi; Alda Nicora (2018). "New Upper Triassic Conodont Biozonation of the Tethyan Realm". In Lawrence H. Tanner (ed.). The Late Triassic World. Topics in Geobiology. Vol. 46. Springer. pp. 189–235. doi:10.1007/978-3-319-68009-5_6. hdl:11577/3258473. ISBN 978-3-319-68008-8.
  155. ^ a b M. A. Soboleva (2017). "New species of genus Palmatolepis (conodonts) from Frasnian deposits of the Subpolar and Polar Urals" (PDF). Syktyvkar Palaeontological Miscellany. 8: 40–50.
  156. ^ Gilbert Klapper; Thomas T. Uyeno; Derek K. Armstrong; Peter G. Telford (2017). "Palmatolepis spallettae, new name for a Frasnian conodont species". Journal of Paleontology. 91 (3): 578. Bibcode:2017JPal...91..578K. doi:10.1017/jpa.2017.21. S2CID 133637822.
  157. ^ N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2019). "Polygnathus sharyuensis nom. nov., a new replacement name for the Famennian (Upper Devonian) Polygnathus mawsonae Ovnatanova et al., 2017 (Conodonta)". Paleontological Journal. 53 (2): 214. doi:10.1134/S0031030119020096. S2CID 195299628.
  158. ^ A. N. Plotitsyn; A. V. Zhuravlev (2017). "A new species of the conodont genus Polygnathus from the Tournaisian of the northern Urals, Chernyshev Ridge and Pai-Khoi". Paleontological Journal. 51 (3): 304–307. doi:10.1134/S0031030117030091. S2CID 133888829.[permanent dead link]
  159. ^ a b Z.T. Zhang; Y.D. Sun; X.L. Lai; M.M. Joachimski; P.B. Wignall (2017). "Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 486: 142–157. Bibcode:2017PPP...486..142Z. doi:10.1016/j.palaeo.2017.02.011.
  160. ^ Andrey V. Zhuravlev (2017). "A new species of the conodont genus Siphonodella Branson & Mehl (late Tournaisian)". Estonian Journal of Earth Sciences. 66 (4): 188–192. doi:10.3176/earth.2017.15.
  161. ^ Sandra I. Kaiser; Tomáš Kumpan; Vojtěch Cígler (2017). "New unornamented siphonodellids (Conodonta) of the lower Tournaisian from the Rhenish Massif and Moravian Karst (Germany and Czech Republic)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 286 (1): 1–33. doi:10.1127/njgpa/2017/0684.
  162. ^ Lina Wang; Paul B. Wignall; Yadong Sun; Chunbo Yan; Zaitian Zhang; Xulong Lai (2017). "New Permian-Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus" (PDF). Journal of Asian Earth Sciences. 146: 152–167. Bibcode:2017JAESc.146..152W. doi:10.1016/j.jseaes.2017.05.014.
  163. ^ Malcolm A. MacIver; Lars Schmitz; Ugurcan Mugan; Todd D. Murphey; Curtis D. Mobley (2017). "Massive increase in visual range preceded the origin of terrestrial vertebrates". Proceedings of the National Academy of Sciences of the United States of America. 114 (12): E2375–E2384. Bibcode:2017PNAS..114E2375M. doi:10.1073/pnas.1615563114. PMC 5373340. PMID 28270619.
  164. ^ Julia L. Molnar; Rui Diogo; John R. Hutchinson; Stephanie E. Pierce (2017). "Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition". Biological Reviews. 93 (2): 1077–1107. doi:10.1111/brv.12386. PMID 29125205. S2CID 4704712.
  165. ^ Melanie Tietje; Mark-Oliver Rödel (2017). "Contradicting habitat type-extinction risk relationships between living and fossil amphibians". Royal Society Open Science. 4 (5): 170051. Bibcode:2017RSOS....470051T. doi:10.1098/rsos.170051. PMC 5451811. PMID 28573010.
  166. ^ Marylène Danto; Florian Witzmann; Stephanie E. Pierce; Nadia B. Fröbisch (2017). "Intercentrum versus pleurocentrum growth in early tetrapods: A paleohistological approach". Journal of Morphology. 278 (9): 1262–1283. doi:10.1002/jmor.20709. PMID 28517044. S2CID 38390403.
  167. ^ Florian Witzmann; Ingmar Werneburg (2017). "The Palatal Interpterygoid Vacuities of Temnospondyls and the Implications for the Associated Eye- and Jaw Musculature". The Anatomical Record. 300 (7): 1240–1269. doi:10.1002/ar.23582. PMID 28220619. S2CID 4417795.
  168. ^ Ralf Werneburg (2017). "Earliest 'nursery ground' of temnospondyl amphibians in the Permian". Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen. 32: 3–42.
  169. ^ Bryan M. Gee; Yara Haridy; Robert R. Reisz (2017). "Histological characterization of denticulate palatal plates in an Early Permian dissorophoid". PeerJ. 5: e3727. doi:10.7717/peerj.3727. PMC 5571816. PMID 28848692.
  170. ^ Claudia A. Marsicano; Elizabeth Latimer; Bruce Rubidge; Roger M.H Smith (2017). "The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic". Zoological Journal of the Linnean Society. 181 (2): 357–384. doi:10.1093/zoolinnean/zlw032. hdl:11336/105150.
  171. ^ Karine Lohmann Azevedo; Cristina Silveira Vega; Marina Bento Soares (2017). "A new specimen of Australerpeton cosgriffi Barberena, 1998 (Stereospondyli: Rhinesuchidae) from the Middle/Upper Permian Rio do Rasto Formation, Paraná Basin, Brazil". Revista Brasileira de Paleontologia. 20 (3): 333–344. doi:10.4072/rbp.2017.3.05.
  172. ^ Thomas Arbez; Anissa Dahoumane; J.-Sébastien Steyer (2017). "Exceptional endocranium and middle ear of Stanocephalosaurus (Temnospondyli: Capitosauria) from the Triassic of Algeria revealed by micro-CT scan, with new functional interpretations of the hearing system" (PDF). Zoological Journal of the Linnean Society. 180 (4): 910–929. doi:10.1093/zoolinnean/zlw007.
  173. ^ Josep Fortuny; Jordi Marcé-Nogué; Dorota Konietzko-Meier (2017). "Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach". Journal of Anatomy. 230 (6): 752–765. doi:10.1111/joa.12605. PMC 5442151. PMID 28369819.
  174. ^ Bryan M. Gee; William G. Parker; Adam D. Marsh (2017). "Microanatomy and paleohistology of the intercentra of North American metoposaurids from the Upper Triassic of Petrified Forest National Park (Arizona, USA) with implications for the taxonomy and ontogeny of the group". PeerJ. 5: e3183. doi:10.7717/peerj.3183. PMC 5398283. PMID 28439462.
  175. ^ Bryan M. Gee; William G. Parker (2017). "A juvenile Koskinonodon perfectus (Temnospondyli, Metoposauridae) from the Upper Triassic of Arizona and its implications for the taxonomy of North American metoposaurids". Journal of Paleontology. 91 (5): 1047–1059. Bibcode:2017JPal...91.1047G. doi:10.1017/jpa.2017.18. S2CID 134611838.
  176. ^ Florian Witzmann; Elizabeth Brainerd (2017). "Modeling the physiology of the aquatic temnospondyl Archegosaurus decheni from the early Permian of Germany". Fossil Record. 20 (2): 105–127. doi:10.5194/fr-20-105-2017.
  177. ^ Pavel P. Skutschas; Elizaveta A. Boitsova (2017). "Histology of sculptured cranial dermal bones of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan". Historical Biology: An International Journal of Paleobiology. 29 (3): 423–429. doi:10.1080/08912963.2016.1171859. S2CID 87609117.
  178. ^ Jérémy Tissier; Jean-Claude Rage; Michel Laurin (2017). "Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander". PeerJ. 5: e3861. doi:10.7717/peerj.3861. PMC 5629955. PMID 29018606.
  179. ^ A. Kristopher Lappin; Sean C. Wilcox; David J. Moriarty; Stephanie A. R. Stoeppler; Susan E. Evans; Marc E. H. Jones (2017). "Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs". Scientific Reports. 7 (1): Article number 11963. Bibcode:2017NatSR...711963L. doi:10.1038/s41598-017-11968-6. PMC 5607344. PMID 28931936.
  180. ^ Massimo Delfino (2017). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. 140: Article 102353. doi:10.1016/j.jhevol.2017.06.008. PMID 28712471. S2CID 22517710.
  181. ^ Jason D. Pardo; Matt Szostakiwskyj; Per E. Ahlberg; Jason S. Anderson (2017). "Hidden morphological diversity among early tetrapods". Nature. 546 (7660): 642–645. Bibcode:2017Natur.546..642P. doi:10.1038/nature22966. hdl:1880/113382. PMID 28636600. S2CID 2478132.
  182. ^ Josep Fortuny; Stéphanie Gastou; François Escuillié; Lovasoa Ranivoharimanana; J.-Sébastien Steyer (2017). "A new extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and palaeobiogeographical implications for trematosaurids". Journal of Systematic Palaeontology. 16 (8): 675–688. doi:10.1080/14772019.2017.1335805. S2CID 134191156.
  183. ^ Jason D. Pardo; Bryan J. Small; Adam K. Huttenlocker (2017). "Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia". Proceedings of the National Academy of Sciences of the United States of America. 114 (27): E5389–E5395. Bibcode:2017PNAS..114E5389P. doi:10.1073/pnas.1706752114. PMC 5502650. PMID 28630337.
  184. ^ Marco Marzola; Octávio Mateus; Neil H. Shubin; Lars B. Clemmensen (2017). "Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland)". Journal of Vertebrate Paleontology. 37 (2): e1303501. Bibcode:2017JVPal..37E3501M. doi:10.1080/02724634.2017.1303501. hdl:10362/33003. S2CID 134255506.
  185. ^ Estevan Eltink; Átila A. Stock Da-Rosa; Sérgio Dias-da-Silva (2017). "A capitosauroid from the Lower Triassic of South America (Sanga do Cabral Supersequence:Paraná Basin), its phylogenetic relationships and biostratigraphic implications". Historical Biology. 29 (7): 863–874. doi:10.1080/08912963.2016.1255736. S2CID 132509118.
  186. ^ Laura Nicoli (2017). "New clues on anuran evolution: the oldest record of an extant hyloid clade in the Oligocene of Patagonia". Historical Biology: An International Journal of Paleobiology. 29 (8): 1031–1044. doi:10.1080/08912963.2017.1282475. hdl:11336/49287. S2CID 90532522.
  187. ^ Ke-Qin Gao; Jianye Chen (2017). "A new crown-group frog (Amphibia: Anura) from the Early Cretaceous of northeastern Inner Mongolia, China". American Museum Novitates (3876): 1–39. doi:10.1206/3876.1. hdl:2246/6702. S2CID 44121192.
  188. ^ Yuan Wang; Zbyněk Roček; Liping Dong (2017). "A new pelobatoid frog from the lower Eocene of southern China". Palaeobiodiversity and Palaeoenvironments. 98 (2): 225–242. doi:10.1007/s12549-017-0304-1. S2CID 89974467.
  189. ^ Timothy R. Smithson; Michael A. E. Browne; Sarah J Davies; John E. A. Marshall; David Millward; Stig A. Walsh; Jennifer A. Clack (2017). "A new Mississippian tetrapod from Fife, Scotland, and its environmental context". Papers in Palaeontology. 3 (4): 547–557. doi:10.1002/spp2.1086. hdl:2381/40472.
  190. ^ Shan Jiang; Shu-an Ji; Jinyou Mo (2017). "First record of bystrowianid chroniosuchians (Amphibia: Anthracosauromorpha) from the Middle Permian of China". Acta Geologica Sinica (English Edition). 91 (5): 1523–1529. doi:10.1111/1755-6724.13397. S2CID 134350720.
  191. ^ Neil Brocklehurst; Jörg Fröbisch (2017). "A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications". Fossil Record. 20 (1): 87–93. doi:10.5194/fr-20-87-2017.
  192. ^ Marco Romano; Ausonio Ronchi; Simone Maganuco; Umberto Nicosia (2017). "New material of Alierasaurus ronchii (Synapsida, Caseidae) from the Permian of Sardinia (Italy), and its phylogenetic affinities". Palaeontologia Electronica. 20 (2): Article number 20.2.26A. doi:10.26879/684. hdl:11573/1045550.
  193. ^ Christen D. Shelton; Paul Martin Sander (2017). "Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage". Comptes Rendus Palevol. 16 (4): 397–424. Bibcode:2017CRPal..16..397S. doi:10.1016/j.crpv.2017.02.002.
  194. ^ Neil Brocklehurst; Kirstin S. Brink (2017). "Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous". FACETS. 2: 68–84. doi:10.1139/facets-2016-0046.
  195. ^ Kévin Rey; Romain Amiot; François Fourel; Fernando Abdala; Frédéric Fluteau; Nour-Eddine Jalil; Jun Liu; Bruce S. Rubidge; Roger M.H. Smith; J. Sébastien Steyer; Pia A. Viglietti; Xu Wang; Christophe Lécuyer (2017). "Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades". eLife. 6: e28589. doi:10.7554/eLife.28589. PMC 5515572. PMID 28716184.
  196. ^ J. Benoit; V. Fernandez; P.R. Manger; B.S. Rubidge (2017). "Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological diversity at the deep evolutionary root of mammals". Brain, Behavior and Evolution. 90 (4): 311–333. doi:10.1159/000481525. PMID 29130981. S2CID 12062696.
  197. ^ Julien Benoit; Paul R. Manger; Vincent Fernandez; Bruce S. Rubidge (2017). "The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida". Palaeontologia Africana. 52: 58–77. hdl:10539/23023.
  198. ^ Julien Benoit; Paul R. Manger; Luke Norton; Vincent Fernandez; Bruce S. Rubidge (2017). "Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia)". PeerJ. 5: e3496. doi:10.7717/peerj.3496. PMC 5554600. PMID 28828230.
  199. ^ Chloe Olivier; Alexandra Houssaye; Nour-Eddine Jalil; Jorge Cubo (2017). "First palaeohistological inference of resting metabolic rate in an extinct synapsid, Moghreberia nmachouensis (Therapsida: Anomodontia)". Biological Journal of the Linnean Society. 121 (2): 409–419. doi:10.1093/biolinnean/blw044.
  200. ^ Michael Laaß; Burkhard Schillinger; Anders Kaestner (2017). "What did the "Unossified zone" of the non-mammalian therapsid braincase house?". Journal of Morphology. 278 (8): 1020–1032. doi:10.1002/jmor.20583. PMID 28621458. S2CID 23767779.
  201. ^ Kenneth D. Angielczyk; Christian F. Kammerer (2017). "The cranial morphology, phylogenetic position and biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen (Therapsida, Anomodontia)". Papers in Palaeontology. 3 (4): 513–545. doi:10.1002/spp2.1087.
  202. ^ Jennifer Botha-Brink (2017). "Burrowing in Lystrosaurus: preadaptation to a postextinction environment?". Journal of Vertebrate Paleontology. 37 (5): e1365080. Bibcode:2017JVPal..37E5080B. doi:10.1080/02724634.2017.1365080. S2CID 89742527.
  203. ^ Michael Laaß; Anders Kaestner (2017). "Evidence for convergent evolution of a neocortex-like structure in a late Permian therapsid". Journal of Morphology. 278 (8): 1033–1057. doi:10.1002/jmor.20712. PMID 28621462. S2CID 25032751.
  204. ^ Megan R. Whitney; Larry Mose; Christian A. Sidor (2017). "Odontoma in a 255-million-year-old mammalian forebear". JAMA Oncology. 3 (7): 998–1000. doi:10.1001/jamaoncol.2016.5417. PMC 5824274. PMID 27930769.
  205. ^ Ricardo Araújo; Vincent Fernandez; Michael J. Polcyn; Jörg Fröbisch; Rui M.S. Martins (2017). "Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy". PeerJ. 5: e3119. doi:10.7717/peerj.3119. PMC 5390774. PMID 28413721.
  206. ^ Christian F. Kammerer (2017). "Anatomy and relationships of the South African gorgonopsian Arctops (Therapsida, Theriodontia)". Papers in Palaeontology. 3 (4): 583–611. doi:10.1002/spp2.1094. S2CID 90784117.
  207. ^ Christian F. Kammerer (2017). "Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species". Palaeontologia Africana. 52: 85–88. hdl:10539/23480.
  208. ^ Julien Benoit; Luke A. Norton; Paul R. Manger; Bruce S. Rubidge (2017). "Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques". PLOS ONE. 12 (2): e0172047. Bibcode:2017PLoSO..1272047B. doi:10.1371/journal.pone.0172047. PMC 5302418. PMID 28187210.
  209. ^ Michael W. Maisch (2017). "Re-assessment of Silphoictidoides ruhuhuensis von Huene, 1950 (Therapsida, Therocephalia) from the Late Permian of Tanzania: one of the most basal baurioids known". Palaeodiversity. 10 (1): 25–39. doi:10.18476/pale.v10.a3. S2CID 90077728.
  210. ^ Julien Benoit; Sandra C. Jasinoski; Vincent Fernandez; Fernando Abdala (2017). "The mystery of a missing bone: revealing the orbitosphenoid in basal Epicynodontia (Cynodontia, Therapsida) through computed tomography". The Science of Nature. 104 (7–8): Article 66. Bibcode:2017SciNa.104...66B. doi:10.1007/s00114-017-1487-z. PMID 28721557. S2CID 23688904.
  211. ^ A. W. Crompton; T. Owerkowicz; B.-A. S. Bhullar; C. Musinsky (2017). "Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy". Journal of Vertebrate Paleontology. 37 (1): e1269116. Bibcode:2017JVPal..37E9116C. doi:10.1080/02724634.2017.1269116. S2CID 39300694.
  212. ^ Sandra C. Jasinoski; Fernando Abdala (2017). "Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus". PeerJ. 5: e2875. doi:10.7717/peerj.2875. PMC 5228509. PMID 28097072.
  213. ^ Sandra C. Jasinoski; Fernando Abdala (2017). "Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps". The Anatomical Record. 300 (2): 353–381. doi:10.1002/ar.23473. hdl:11336/66934. PMID 27615281. S2CID 3629704.
  214. ^ Jun Liu; Vincent P. Schneider; Paul E. Olsen (2017). "The postcranial skeleton of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA and the comparison with other traversodontids". PeerJ. 5: e3521. doi:10.7717/peerj.3521. PMC 5601084. PMID 28929007.
  215. ^ Tai Kubo; Eisuke Yamada; Mugino O. Kubo (2017). "Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia) inferred from its dental microwear". PLOS ONE. 12 (11): e0188023. Bibcode:2017PLoSO..1288023K. doi:10.1371/journal.pone.0188023. PMC 5706674. PMID 29186178.
  216. ^ Agustín G. Martinelli; Marina Bento Soares; Téo Veiga De Oliveira; Pablo G. Rodrigues; Cesar L. Schultz (2017). "The Triassic eucynodont Candelariodon barberenai revisited and the early diversity of stem prozostrodontians". Acta Palaeontologica Polonica. 62 (3): 527–542. doi:10.4202/app.00344.2017.
  217. ^ Leandro C. Gaetano; Fernando Abdala; Romala Govender (2017). "The postcranial skeleton of the Lower Jurassic Tritylodon longaevus from southern Africa". Ameghiniana. 54 (1): 1–35. doi:10.5710/AMGH.11.09.2016.3011. hdl:11336/67040. S2CID 131866292.
  218. ^ Elsa Panciroli; Stig Walsh; Nicholas C. Fraser; Stephen L. Brusatte; Ian Corfe (2017). "A reassessment of the postcanine dentition and systematics of the tritylodontid Stereognathus (Cynodontia, Tritylodontidae, Mammaliamorpha), from the Middle Jurassic of the United Kingdom". Journal of Vertebrate Paleontology. 37 (5): e1351448. Bibcode:2017JVPal..37E1448P. doi:10.1080/02724634.2017.1351448. hdl:10138/230155. S2CID 90100319.
  219. ^ E.M. Bordy; L. Sciscio; F. Abdala; B.W. McPhee; J.N. Choiniere (2017). "First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa)". Palaeogeography, Palaeoclimatology, Palaeoecology. 468: 362–372. Bibcode:2017PPP...468..362B. doi:10.1016/j.palaeo.2016.12.024. hdl:11336/91165.
  220. ^ Stephan Lautenschlager; Pamela Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2017). "Morphological evolution of the mammalian jaw adductor complex" (PDF). Biological Reviews. 92 (4): 1910–1940. doi:10.1111/brv.12314. PMC 6849872. PMID 27878942.
  221. ^ Agustín G. Martinelli; Estevan Eltink; Átila A. S. Da-Rosa; Max C. Langer (2017). "A new cynodont from the Santa Maria formation, south Brazil, improves Late Triassic probainognathian diversity". Papers in Palaeontology. 3 (3): 401–423. doi:10.1002/spp2.1081. S2CID 134049061.
  222. ^ Agustín G. Martinelli; Christian F. Kammerer; Tomaz P. Melo; Voltaire D. Paes Neto; Ana Maria Ribeiro; Átila A. S. Da-Rosa; Cesar L. Schultz; Marina Bento Soares (2017). "The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance". PLOS ONE. 12 (6): e0177948. Bibcode:2017PLoSO..1277948M. doi:10.1371/journal.pone.0177948. PMC 5470689. PMID 28614355.
  223. ^ Christian F. Kammerer; Roger M.H. Smith (2017). "An early geikiid dicynodont from the Tropidostoma Assemblage Zone (late Permian) of South Africa". PeerJ. 5: e2913. doi:10.7717/peerj.2913. PMC 5289114. PMID 28168104.
  224. ^ Jun Liu; Fernando Abdala (2017). "Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China". Vertebrata PalAsiatica. 55 (1): 24–40. doi:10.19615/j.cnki.1000-3118.2017.01.002.
  225. ^ a b Adam K. Huttenlocker; Roger M.H. Smith (2017). "New whaitsioids (Therapsida: Therocephalia) from the Teekloof Formation of South Africa and therocephalian diversity during the end-Guadalupian extinction". PeerJ. 5: e3868. doi:10.7717/peerj.3868. PMC 5632541. PMID 29018609.
  226. ^ a b Paúl M. Velazco; Alexandra J. Buczek; Michael J. Novacek (2017). "Two new tritylodontids (Synapsida, Cynodontia, Mammaliamorpha) from the Upper Jurassic, southwestern Mongolia". American Museum Novitates (3874): 1–35. doi:10.1206/3874.1. hdl:2246/6698. S2CID 58895088.
  227. ^ A. A. Kurkin (2017). "A new Galeopid (Anomodontia, Galeopidae) from the Permian of Eastern Europe". Paleontological Journal. 51 (3): 308–312. doi:10.1134/S0031030117030042. S2CID 134828114.
  228. ^ Tomaz P. Melo; Agustín G. Martinelli; Marina B. Soares (2017). "A new gomphodont cynodont (Traversodontidae) from the Middle–Late Triassic Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence, Brazil". Palaeontology. 60 (4): 571–582. Bibcode:2017Palgy..60..571M. doi:10.1111/pala.12302. S2CID 135139694.
  229. ^ Jun Liu; Fernando Abdala (2017). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 1. Shiguaignathus wangi gen. et sp. nov., the first akidnognathid therocephalian from China". PeerJ. 5: e4150. doi:10.7717/peerj.4150. PMC 5723136. PMID 29230374.
  230. ^ M. Zhu; A. Yu. Zhuravlev; R.A. Wood; F. Zhao; S.S. Sukhov (2017). "A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform" (PDF). Geology. 45 (5): 459–462. Bibcode:2017Geo....45..459Z. doi:10.1130/G38865.1. hdl:20.500.11820/319d761a-cd15-4e81-9038-bde69d45046b. S2CID 132968299.
  231. ^ John R. Paterson; James G. Gehling; Mary L. Droser; Russell D. C. Bicknell (2017). "Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia". Scientific Reports. 7: Article number 45539. Bibcode:2017NatSR...745539P. doi:10.1038/srep45539. PMC 5371987. PMID 28358056.
  232. ^ Simon A. F. Darroch; Imran A. Rahman; Brandt Gibson; Rachel A. Racicot; Marc Laflamme (2017). "Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina". Biology Letters. 13 (5): 20170033. doi:10.1098/rsbl.2017.0033. PMC 5454237. PMID 28515329.
  233. ^ Lucas Veríssimo Warren; Fernanda Quaglio; Marcello Guimarães Simões; Claudio Gaucher; Claudio Riccomini; Daniel G. Poiré; Bernardo Tavares Freitas; Paulo C. Boggiani; Alcides Nobrega Sial (2017). "Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran". Precambrian Research. 298: 79–87. Bibcode:2017PreR..298...79W. doi:10.1016/j.precamres.2017.05.003. hdl:11449/163140.
  234. ^ Scott D. Evans; Mary L. Droser; James G. Gehling (2017). "Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata". PLOS ONE. 12 (5): e0176874. Bibcode:2017PLoSO..1276874E. doi:10.1371/journal.pone.0176874. PMC 5435172. PMID 28520741.
  235. ^ Renee S. Hoekzema; Martin D. Brasier; Frances S. Dunn; Alexander G. Liu (2017). "Quantitative study of developmental biology confirms Dickinsonia as a metazoan". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20171348. doi:10.1098/rspb.2017.1348. PMC 5597836. PMID 28904140.
  236. ^ M.A. Zakrevskaya; A.Yu. Ivantsov (2017). "Dickinsonia costata — the first evidence of neoteny in Ediacaran organisms". Invertebrate Zoology. 14 (1): 92–98. doi:10.15298/invertzool.14.1.13.
  237. ^ Bruce S. Lieberman; Richard Kurkewicz; Heather Shinogle; Julien Kimmig; Breandán Anraoi MacGabhann (2017). "Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA". PeerJ. 5: e3312. doi:10.7717/peerj.3312. PMC 5463991. PMID 28603667.
  238. ^ Bruno Becker-Kerber; Mírian Liza Alves Forancelli Pacheco; Isaac Daniel Rudnitzki; Douglas Galante; Fabio Rodrigues; Juliana de Moraes Leme (2017). "Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization". Scientific Reports. 7 (1): Article number 5482. Bibcode:2017NatSR...7.5482B. doi:10.1038/s41598-017-05753-8. PMC 5511220. PMID 28710440.
  239. ^ Luke A. Parry; Paulo C. Boggiani; Daniel J. Condon; Russell J. Garwood; Juliana de M. Leme; Duncan McIlroy; Martin D. Brasier; Ricardo Trindade; Ginaldo A. C. Campanha; Mírian L. A. F. Pacheco; Cleber Q. C. Diniz; Alexander G. Liu (2017). "Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil" (PDF). Nature Ecology & Evolution. 1 (10): 1455–1464. doi:10.1038/s41559-017-0301-9. PMID 29185521. S2CID 40497407.
  240. ^ Joseph P. Botting; Lucy A. Muir; Yuandong Zhang; Xuan Ma; Junye Ma; Longwu Wang; Jianfang Zhang; Yanyan Song; Xiang Fang (2017). "Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass Extinction". Current Biology. 27 (4): 556–562. doi:10.1016/j.cub.2016.12.061. PMID 28190724.
  241. ^ Arnaud Brayard; L. J. Krumenacker; Joseph P. Botting; James F. Jenks; Kevin G. Bylund; Emmanuel Fara; Emmanuelle Vennin; Nicolas Olivier; Nicolas Goudemand; Thomas Saucède; Sylvain Charbonnier; Carlo Romano; Larisa Doguzhaeva; Ben Thuy; Michael Hautmann; Daniel A. Stephen; Christophe Thomazo; Gilles Escarguel (2017). "Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna". Science Advances. 3 (2): e1602159. Bibcode:2017SciA....3E2159B. doi:10.1126/sciadv.1602159. PMC 5310825. PMID 28246643.
  242. ^ Fletcher J. Young; Jakob Vinther (2017). "Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni". Palaeontology. 60 (1): 27–54. Bibcode:2017Palgy..60...27Y. doi:10.1111/pala.12269. hdl:1983/92180ef0-2205-4c65-9a70-90d59cfea2f4. S2CID 55477207.
  243. ^ a b Han Zeng; Fangchen Zhao; Zongjun Yin; Maoyan Zhu (2017). "Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China". Journal of Systematic Palaeontology. 16 (1): 1–37. doi:10.1080/14772019.2016.1263685. S2CID 133549817.
  244. ^ Stephen Pates; Allison C. Daley; Javier Ortega-Hernández (2017). "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris". Acta Palaeontologica Polonica. 62 (3): 619–625. doi:10.4202/app.00361.2017.
  245. ^ a b c Stephen Pates; Allison C. Daley (2017). "Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada". Papers in Palaeontology. 3 (3): 461–470. doi:10.1002/spp2.1084. S2CID 135026011.
  246. ^ Peiyun Cong; Allison C. Daley; Gregory D. Edgecombe; Xianguang Hou (2017). "The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata". BMC Evolutionary Biology. 17 (1): 208. doi:10.1186/s12862-017-1049-1. PMC 5577670. PMID 28854872.
  247. ^ Joseph Moysiuk; Martin R. Smith; Jean-Bernard Caron (2017). "Hyoliths are Palaeozoic lophophorates" (PDF). Nature. 541 (7637): 394–397. Bibcode:2017Natur.541..394M. doi:10.1038/nature20804. PMID 28077871. S2CID 4409157.
  248. ^ Lauren Sallan; Sam Giles; Robert S. Sansom; John T. Clarke; Zerina Johanson; Ivan J. Sansom; Philippe Janvier (2017). "The 'Tully Monster' is not a vertebrate: characters, convergence and taphonomy in Palaeozoic problematic animals" (PDF). Palaeontology. 60 (2): 149–157. Bibcode:2017Palgy..60..149S. doi:10.1111/pala.12282. S2CID 90132820.
  249. ^ JinShu Li; JianNi Liu; Qiang Ou (2017). "New observations on Vetulicola longbaoshanensis from the Lower Cambrian Guanshan Biota (Series 2, Stage 4), South China". Science China Earth Sciences. 60 (10): 1795–1804. Bibcode:2017ScChD..60.1795L. doi:10.1007/s11430-017-9088-y. S2CID 135037211.
  250. ^ George Poinar Jr.; Kenneth A. Philbrick; Martin J. Cohn; Russell T. Turner; Urszula T. Iwaniec; Joerg Wunderlich (2017). "X-ray microcomputed tomography reveals putative trematode metacercaria in a 100 million year-old lizard (Squamata: Agamidae)". Cretaceous Research. 80: 27–30. Bibcode:2017CrRes..80...27P. doi:10.1016/j.cretres.2017.07.017.
  251. ^ a b Ya-Sheng Wu (2017). "A latest Permian non-reef calcisponge fauna from Laibin, Guangxi, southern China and its significance". Journal of Palaeogeography. 6 (1): 60–68. Bibcode:2017JPalG...6...60W. doi:10.1016/j.jop.2016.10.002.
  252. ^ a b c Michael J. Melchin; Alfred C. Lenz; Anna Kozłowska (2017). "Retiolitine graptolites from the Aeronian and lower Telychian (Llandovery, Silurian) of Arctic Canada". Journal of Paleontology. 91 (1): 116–145. Bibcode:2017JPal...91..116M. doi:10.1017/jpa.2016.107. S2CID 131854052.
  253. ^ Gerd Geyer (2017). "A new enigmatic hyolith from the Cambrian of West Gondwana and its bearing on the systematics of hyoliths". Papers in Palaeontology. 4 (1): 85–100. doi:10.1002/spp2.1098. S2CID 90158754.
  254. ^ Hao Yun; Xingliang Zhang; Luoyang Li (2017). "Chancelloriid Allonnia erjiensis sp. nov. from the Chengjiang Lagerstätte of South China". Journal of Systematic Palaeontology. 16 (5): 435–444. doi:10.1080/14772019.2017.1311380. S2CID 90908751.
  255. ^ Olle Hints; Petra Tonarová; Mats E. Eriksson; Claudia V. Rubinstein; G. Susana de la Puente (2017). "Early Middle Ordovician scolecodonts from north-western Argentina and the emergence of labidognath polychaete jaw apparatuses". Palaeontology. 60 (4): 583–593. Bibcode:2017Palgy..60..583H. doi:10.1111/pala.12303. hdl:11336/96614. S2CID 90358332.
  256. ^ Xinglian Yang; Yuanlong Zhao; Loren E. Babcock; Jin Peng (2017). "A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China". Geological Magazine. 154 (6): 1334–1343. Bibcode:2017GeoM..154.1334Y. doi:10.1017/S0016756816001229. S2CID 133251786.
  257. ^ X.-L. Yang; Y.-L. Zhao; L. E. Babcock; J. Peng (2017). "Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota (Cambrian Stage 5), Guizhou, South China". Scientific Reports. 7: Article number 42945. Bibcode:2017NatSR...742945Y. doi:10.1038/srep42945. PMC 5318851. PMID 28220860.
  258. ^ Degan Shu; Simon Conway Morris; Jian Han; Jennifer F. Hoyal Cuthill; Zhifei Zhang; Meirong Cheng; Hai Huang (2017). "Multi-jawed chaetognaths from the Chengjiang Lagerstätte (Cambrian, Series 2, Stage 3) of Yunnan, China". Palaeontology. 60 (6): 763–772. Bibcode:2017Palgy..60..763S. doi:10.1111/pala.12325.
  259. ^ Tomáš Kočí; Martina Kočová Veselská; William A. Newman; John S. Buckeridge; Jan Sklenář (2017). "Archaeochionelasmus nekvasilovae gen. et sp. nov. (Cirripedia, Balanomorpha, Chionelasmatoidea) from the Bohemian Cretaceous Basin (Czech Republic): the first bona fide Cretaceous neobalanoform". Zootaxa. 4294 (2): 181–196. doi:10.11646/zootaxa.4294.2.3.
  260. ^ Andy S. Gale; Peter W. Skelton (2018). "The Cretaceous acorn barnacle Archaeochionelasmus nekvasilovae Kočí, Newman and Buckeridge, 2017 (Cirripedia, Neobalanomorpha) is a fragmentary rudist (Bivalvia, Mollusca)" (PDF). Cretaceous Research. 91: 251–256. Bibcode:2018CrRes..91..251G. doi:10.1016/j.cretres.2018.05.017. S2CID 133677479.
  261. ^ Martin Valent; Oldřich Fatka; Ladislav Marek (2017). "Biskolites iactans gen. et sp. nov. from the Cambrian of the Czech Republic (Hyolitha, Skryje-Týřovice Basin)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 227–233. doi:10.1127/njgpa/2017/0679.
  262. ^ Derek E.G. Briggs; Jean-Bernard Caron (2017). "A large Cambrian chaetognath with supernumerary grasping spines". Current Biology. 27 (16): 2536–2543.e1. doi:10.1016/j.cub.2017.07.003. PMID 28781052. S2CID 13291198.
  263. ^ a b c Yaoping Cai; Iván Cortijo; James D. Schiffbauer; Hong Hua (2017). "Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China". Precambrian Research. 298: 146–156. Bibcode:2017PreR..298..146C. doi:10.1016/j.precamres.2017.05.016.
  264. ^ Olev Vinn; Anna Madison (2017). "Cornulitids from the Upper Ordovician of northwestern Russia". Carnets de Géologie. 17 (12): 235–241. doi:10.4267/2042/64289.
  265. ^ Joseph P. Botting; Yuandong Zhang; Lucy A. Muir (2017). "Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution". Scientific Reports. 7 (1): Article number 5286. Bibcode:2017NatSR...7.5286B. doi:10.1038/s41598-017-05604-6. PMC 5509731. PMID 28706211.
  266. ^ a b c Ewa Świerczewska-Gładysz (2017). "Early Campanian Corallistidae (lithistid Demospongiae) from the Miechów and Mogilno-Łódź synclinoria, southern and central Poland". Cretaceous Research. 71: 40–62. Bibcode:2017CrRes..71...40S. doi:10.1016/j.cretres.2016.11.007.
  267. ^ George O. Poinar (2017). "A mermithid nematode, Cretacimermis aphidophilus sp. n. (Nematoda: Mermithidae), parasitising an aphid (Hemiptera: Burmitaphididae) in Myanmar amber: a 100 million year association". Nematology. 19 (5): 509–513. doi:10.1163/15685411-00003063.
  268. ^ Thomas H. P. Harvey; Nicholas J. Butterfield (2017). "Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos" (PDF). Nature Ecology & Evolution. 1 (3): Article number 0022. doi:10.1038/s41559-016-0022. hdl:2381/38658. PMID 28812727. S2CID 22874770. Archived from the original (PDF) on 2021-11-29. Retrieved 2019-08-16.
  269. ^ Jian Han; Yaoping Cai; James D. Schiffbauer; Hong Hua; Xing Wang; Xiaoguang Yang; Kentaro Uesugi; Tsuyoshi Komiya; Jie Sun (2017). "A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China". Geological Magazine. 154 (6): 1294–1305. Bibcode:2017GeoM..154.1294H. doi:10.1017/S0016756816001187. S2CID 133366862.
  270. ^ a b Daniel Ungureanu; Fayez Ahmad; Sherif Farouk (2017). "A Callovian (Middle Jurassic) poriferan fauna from northwestern Jordan: taxonomy, palaeoecology and palaeobiogeography". Historical Biology: An International Journal of Paleobiology. 30 (5): 577–592. doi:10.1080/08912963.2017.1304935. S2CID 90874394.
  271. ^ a b c d Rossana Sanfilippo; Antonietta Rosso; Agatino Reitano; Gianni Insacco (2017). "First record of sabellid and serpulid polychaetes from the Permian of Sicily". Acta Palaeontologica Polonica. 62 (1): 25–38. doi:10.4202/app.00288.2016.
  272. ^ Radek Vodrážka (2017). "Guettardiscyphia zitti sp. n. - a remarkable hexactinellid sponge from the Lower Turonian of the Bohemian Cretaceous Basin". Geological Quarterly. 61 (3): 632–640. doi:10.7306/gq.1373.
  273. ^ Peiyun Cong; Xiaoya Ma; Mark Williams; David J. Siveter; Derek J. Siveter; Sarah E. Gabbott; Dayou Zhai; Tomasz Goral; Gregory D. Edgecombe; Xianguang Hou (2017). "Host-specific infestation in early Cambrian worms". Nature Ecology & Evolution. 1 (10): 1465–1469. doi:10.1038/s41559-017-0278-4. hdl:2381/41401. PMID 29185506. S2CID 5564867.
  274. ^ A.Yu. Ivantsov (2017). "The most probable Eumetazoa among late Precambrian macrofossils". Invertebrate Zoology. 14 (2): 127–133. doi:10.15298/invertzool.14.2.05.
  275. ^ Juwan Jeon; Jino Park; Suk-Joo Choh; Dong-Jin Lee (2017). "Early labechiid stromatoporoids of the Yeongheung Formation (Middle Ordovician), Yeongwol Group, mideastern Korean Peninsula: Part II. Systematic paleontology and paleogeographic implications". Geosciences Journal. 21 (3): 331–340. Bibcode:2017GescJ..21..331J. doi:10.1007/s12303-016-0055-4. S2CID 133559557.
  276. ^ Benjamin Gügel; Kenneth De Baets; Iwan Jerjen; Philipp Schuetz; Christian Klug (2017). "A new subdisarticulated machaeridian from the Middle Devonian of China: Insights into taphonomy and taxonomy using X-ray microtomography and 3D-analysis". Acta Palaeontologica Polonica. 62 (2): 237–247. doi:10.4202/app.00346.2017. hdl:20.500.11850/191018.
  277. ^ Haijing Sun; Loren E. Babcock; Jin Peng; Jessica M. Kastigar (2017). "Systematics and palaeobiology of some Cambrian hyoliths from Guizhou, China, and Nevada, USA". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 79–100. doi:10.1080/03115518.2016.1184426. S2CID 131837609.
  278. ^ a b Thomas Wotte; Frederick A. Sundberg (2017). "Small shelly fossils from the Montezuman–Delamaran of the Great Basin in Nevada and California". Journal of Paleontology. 91 (5): 883–901. Bibcode:2017JPal...91..883W. doi:10.1017/jpa.2017.8. S2CID 135177034.
  279. ^ Fangchen Zhao; Martin R. Smith; Zongjun Yin; Han Zeng; Guoxiang Li; Maoyan Zhu (2017). "Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution". Scientific Reports. 7 (1): Article number 16232. Bibcode:2017NatSR...716232Z. doi:10.1038/s41598-017-16304-6. PMC 5701144. PMID 29176685.
  280. ^ Jean-Bernard Caron; Cédric Aria (2017). "Cambrian suspension-feeding lobopodians and the early radiation of panarthropods". BMC Evolutionary Biology. 17 (1): 29. doi:10.1186/s12862-016-0858-y. PMC 5282736. PMID 28137244.
  281. ^ a b c d Alfons H.M. VandenBerg (2017). "Revision of zonal and related graptolites of the topmost Lancefieldian and Bendigonian (early Floian) graptolite sequence in Victoria, Australia". Proceedings of the Royal Society of Victoria. 129 (2): 39–74. doi:10.1071/rs17007.
  282. ^ Y. Candela; W. R. B. Crighton (2017). "Addenda to the record of machaeridian shell plates in the Wether Law Linn Formation (Late Llandovery), Pentland Hills, Scotland". Scottish Journal of Geology. 53 (1): 35–39. Bibcode:2017ScJG...53...35C. doi:10.1144/sjg2016-006. S2CID 132750137.
  283. ^ a b Tomáš Kočí; Manfred Jäger; Nicolas Morel (2017). "Sabellid and serpulid worm tubes (Polychaeta, Canalipalpata, Sabellida) from the historical stratotype of the Cenomanian (Late Cretaceous; Le Mans region, Sarthe, France)". Annales de Paléontologie. 103 (1): 45–80. Bibcode:2017AnPal.103...45K. doi:10.1016/j.annpal.2016.11.004.
  284. ^ a b Matilde Sylvia Beresi; Joseph P. Botting; Juan J. Palafox; Blanca E. Buitrón Sánchez (2017). "New reticulosan sponges from the middle Cambrian of Sonora, Mexico". Acta Palaeontologica Polonica. 62 (4): 691–703. doi:10.4202/app.00378.2017. hdl:11336/64224.
  285. ^ Jian Han; Simon Conway Morris; Qiang Ou; Degan Shu; Hai Huang (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. Bibcode:2017Natur.542..228H. doi:10.1038/nature21072. PMID 28135722. S2CID 353780.
  286. ^ Yunhuan Liu; Emily Carlisle; Huaqiao Zhang; Ben Yang; Michael Steiner; Tiequan Shao; Baichuan Duan; Federica Marone; Shuhai Xiao; Philip C. J. Donoghue (2022). "Saccorhytus is an early ecdysozoan and not the earliest deuterostome". Nature. 609 (7927): 541–546. Bibcode:2022Natur.609..541L. doi:10.1038/s41586-022-05107-z. hdl:1983/454e7bec-4cd4-4121-933e-abeab69e96c1. PMID 35978194. S2CID 251646316.
  287. ^ a b John S. Peel (2017). "First records from Laurentia of some middle Cambrian (Series 3) sponge spicules". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 306–314. doi:10.1080/03115518.2017.1282983. S2CID 132042906.
  288. ^ John S. Peel (2017). "Feeding behaviour of a new worm (Priapulida) from the Sirius Passet Lagerstätte (Cambrian Series 2, Stage 3) of North Greenland (Laurentia)". Palaeontology. 60 (6): 795–805. Bibcode:2017Palgy..60..795P. doi:10.1111/pala.12316. S2CID 134180194.
  289. ^ Julien Kimmig; Luke C. Strotz; Bruce S. Lieberman (2017). "The stalked filter feeder Siphusauctum lloydguntheri n. sp. from the middle Cambrian (Series 3, Stage 5) Spence Shale of Utah: its biological affinities and taphonomy". Journal of Paleontology. 91 (5): 902–910. Bibcode:2017JPal...91..902K. doi:10.1017/jpa.2017.57. S2CID 135082143.
  290. ^ http://zoobank.org/References/D0590390-A85A-493A-8529-B2DF64D91169 [dead link]
  291. ^ Cong, Pei-Yun; Edgecombe, Gregory D.; Daley, Allison C.; Guo, Jin; Pates, Stephen; Hou, Xian-Guang (2018-06-23). "New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta". Papers in Palaeontology. 4 (4): 605–621. doi:10.1002/spp2.1219. ISSN 2056-2802. S2CID 90258934.
  292. ^ Guo, J.; Pates, S.; Cong, P.; Daley, A. C.; Edgecombe, G. D.; Chen, T.; Hou, X. (2018). "A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota". Papers in Palaeontology. 5 (1). ISSN 2056-2799.
  293. ^ Artem Kouchinsky; Stefan Bengtson; Ed Landing; Michael Steiner; Michael Vendrasco; Karen Ziegler (2017). "Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia". Acta Palaeontologica Polonica. 62 (2): 311–440. doi:10.4202/app.00289.2016.
  294. ^ Xingliang Zhang; Wei Liu; Yukio Isozaki; Tomohiko Sato (2017). "Centimeter-wide worm-like fossils from the lowest Cambrian of South China". Scientific Reports. 7 (1): Article number 14504. Bibcode:2017NatSR...714504Z. doi:10.1038/s41598-017-15089-y. PMC 5674079. PMID 29109509.
  295. ^ Mats E. Eriksson; Luke A. Parry; David M. Rudkin (2017). "Earth's oldest 'Bobbit worm' – gigantism in a Devonian eunicidan polychaete". Scientific Reports. 7: Article number 43061. Bibcode:2017NatSR...743061E. doi:10.1038/srep43061. PMC 5318920. PMID 28220886.
  296. ^ T. Hassenkam; M. P. Andersson; K. N. Dalby; D. M. A. Mackenzie; M. T. Rosing (2017). "Elements of Eoarchean life trapped in mineral inclusions". Nature. 548 (7665): 78–81. Bibcode:2017Natur.548...78H. doi:10.1038/nature23261. PMID 28738409. S2CID 205257931.
  297. ^ Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T. S. (2 March 2017). "Evidence for early life in Earth's oldest hydrothermal vent precipitates" (PDF). Nature. 543 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. S2CID 2420384.
  298. ^ Takayuki Tashiro; Akizumi Ishida; Masako Hori; Motoko Igisu; Mizuho Koike; Pauline Méjean; Naoto Takahata; Yuji Sano; Tsuyoshi Komiya (2017). "Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada". Nature. 549 (7673): 516–518. Bibcode:2017Natur.549..516T. doi:10.1038/nature24019. PMID 28959955. S2CID 4470796.
  299. ^ Martin J. Whitehouse; Daniel J. Dunkley; Monika A. Kusiak; Simon A. Wilde (2019). "On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador". Precambrian Research. 323: 70–81. Bibcode:2019PreR..323...70W. doi:10.1016/j.precamres.2019.01.001. S2CID 134499370.
  300. ^ Tara Djokic; Martin J. Van Kranendonk; Kathleen A. Campbell; Malcolm R. Walter; Colin R. Ward (2017). "Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits". Nature Communications. 8: Article number 15263. Bibcode:2017NatCo...815263D. doi:10.1038/ncomms15263. PMC 5436104. PMID 28486437.
  301. ^ Dorothy Z. Oehler; Maud M. Walsh; Kenichiro Sugitani; Ming-Chang Liu; Christopher H. House (2017). "Large and robust lenticular microorganisms on the young Earth". Precambrian Research. 296: 112–119. Bibcode:2017PreR..296..112O. doi:10.1016/j.precamres.2017.04.031.
  302. ^ Zachary R. Adam; Mark L. Skidmore; David W. Mogk; Nicholas J. Butterfield (2017). "A Laurentian record of the earliest fossil eukaryotes". Geology. 45 (5): 387–390. Bibcode:2017Geo....45..387A. doi:10.1130/G38749.1.
  303. ^ Stefan Bengtson; Birger Rasmussen; Magnus Ivarsson; Janet Muhling; Curt Broman; Federica Marone; Marco Stampanoni; Andrey Bekker (2017). "Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt". Nature Ecology & Evolution. 1 (6): Article number 0141. doi:10.1038/s41559-017-0141. hdl:20.500.11937/67718. PMID 28812648. S2CID 25586788.
  304. ^ Qing Tang; Ke Pang; Xunlai Yuan; Shuhai Xiao (2017). "Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Chuaria". Geology. 45 (1): 75–78. Bibcode:2017Geo....45...75T. doi:10.1130/G38680.1.
  305. ^ Phoebe A. Cohen; Justin V. Strauss; Alan D. Rooney; Mukul Sharma; Nicholas Tosca (2017). "Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote". Science Advances. 3 (6): e1700095. Bibcode:2017SciA....3E0095C. doi:10.1126/sciadv.1700095. PMC 5489269. PMID 28782008.
  306. ^ Zongjun Yin; John A. Cunningham; Kelly Vargas; Stefan Bengtson; Maoyan Zhu; Philip C.J. Donoghue (2017). "Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng'an Biota". Precambrian Research. 301: 145–151. Bibcode:2017PreR..301..145Y. doi:10.1016/j.precamres.2017.08.009. hdl:1983/b9709cfd-7d3b-42c4-a86a-fa8657ac548d.
  307. ^ Jennifer F. Hoyal Cuthill; Simon Conway Morris (2017). "Nutrient-dependent growth underpinned the Ediacaran transition to large body size" (PDF). Nature Ecology & Evolution. 1 (8): 1201–1204. doi:10.1038/s41559-017-0222-7. PMID 29046572. S2CID 3639850.
  308. ^ Alana C. Sharp; Alistair R. Evans; Siobhan A. Wilson; Patricia Vickers-Rich (2017). "First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life". Precambrian Research. 299: 303–308. Bibcode:2017PreR..299..303S. doi:10.1016/j.precamres.2017.07.023.
  309. ^ E. F. Smith; L. L. Nelson; S. M. Tweedt; H. Zeng; J. B. Workman (2017). "A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link". Proceedings of the Royal Society B: Biological Sciences. 284 (1858): 20170934. doi:10.1098/rspb.2017.0934. PMC 5524506. PMID 28701565.
  310. ^ Zofia Dubicka; Przemysław Gorzelak (2017). "Unlocking the biomineralization style and affinity of Paleozoic fusulinid foraminifera". Scientific Reports. 7 (1): Article number 15218. Bibcode:2017NatSR...715218D. doi:10.1038/s41598-017-15666-1. PMC 5680253. PMID 29123221.
  311. ^ Chenyang Cai; Richard A. B. Leschen; David S. Hibbett; Fangyuan Xia; Diying Huang (2017). "Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous". Nature Communications. 8: Article number 14894. Bibcode:2017NatCo...814894C. doi:10.1038/ncomms14894. PMC 5357310. PMID 28300055.
  312. ^ R. W. Howe (2017). "Acadialithus, a new nannofossil genus from offshore Eastern Newfoundland, Canada". Journal of Nannoplankton Research. 37 (1): 61–66. doi:10.58998/jnr2123.
  313. ^ a b Grzegorz Worobiec; Frank Harald Neumann; Elżbieta Worobiec; Verena Nitz; Christoph Hartkopf-Fröder (2017). "New fungal cephalothecoid-like fructifications from central European Neogene deposits". Fungal Biology. 121 (3): 285–292. doi:10.1016/j.funbio.2016.12.005. PMID 28215354.
  314. ^ a b Serge V. Naugolnykh (2017). "Lower Kungurian shallow-water lagoon biota of Middle Cis-Urals, Russia: towards paleoecological reconstruction". Global Geology (English Edition). 20 (1): 1–13. doi:10.3969/j.issn.1673-9736.2017.01.01.
  315. ^ a b c d e f g h i Fumio Kobayashi (2017). "Late Carboniferous and Early Permian fusulines of the Akiyoshi Limestone Group in the Wakatakeyama area, Akiyoshi (Japan) – Biostratigraphy, biogeography, and biodiversity". Revue de Paléobiologie, Genève. 36 (1): 1–155. doi:10.5281/zenodo.814077.
  316. ^ Marcelo G. Carrera; Ricardo A. Astini; Fernando J. Gomez (2017). "A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium". Journal of Paleontology. 91 (1): 73–85. Bibcode:2017JPal...91...73C. doi:10.1017/jpa.2016.145. hdl:11336/45885. S2CID 131902454.
  317. ^ a b c d e f Arkamitra Vishnu (née Mandal); Mahasin Ali Khan; Meghma Bera; David L. Dilcher; Subir Bera (2017). "Fossil Asterinaceae in the phyllosphere of the eastern Himalayan Neogene Siwalik forest and their palaeoecological significance". Botanical Journal of the Linnean Society. 185 (2): 147–167. doi:10.1093/botlinnean/box050.
  318. ^ Kuniteru Matsumaru (2017). "Larger Foraminifera from the Philippine Archipelago". Micropaleontology. 63 (2–4): 77–253. doi:10.47894/mpal.63.2.01.
  319. ^ Emmanuelle J. Javaux; Andrew H. Knoll (2017). "Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution". Journal of Paleontology. 91 (2): 199–229. Bibcode:2017JPal...91..199J. doi:10.1017/jpa.2016.124. S2CID 15086503.
  320. ^ a b Phoebe A. Cohen; Spencer W. Irvine; Justin V. Strauss (2017). "Vase-shaped microfossils from the Tonian Callison Lake Formation of Yukon, Canada: taxonomy, taphonomy and stratigraphic palaeobiology". Palaeontology. 60 (5): 683–701. doi:10.1111/pala.12315. S2CID 134894899.
  321. ^ a b Cleber F. Alves; Francisco Henrique de Oliveira Lima; Seirin Shimabukuro (2017). "New Aptian calcareous nannofossil species from Brazil". Journal of Nannoplankton Research. 37 (1): 15–24. doi:10.58998/jnr2004.
  322. ^ Vladimir A. Musatov (2017). "A new species of the genus Chiphragmalithus from the Ypresian stage (early Eocene) in the northern part of the Caspian Depression (Russia)". Journal of Nannoplankton Research. 37 (1): 67–76. doi:10.58998/jnr2183.
  323. ^ Wei Du; Xun Lian Wang; Tsuyoshi Komiya; Ran Zhao; Yue Wang (2017). "Dendroid multicellular thallophytes preserved in a Neoproterozoic black phosphorite in southern China". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 1–11. doi:10.1080/03115518.2016.1159408. S2CID 130894232.
  324. ^ Bing Shen; Shuhai Xiao; Chuanming Zhou; Lin Dong; Jieqiong Chang; Zhe Chen (2017). "A new modular palaeopascichnid fossil Curviacus ediacaranus new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China". Geological Magazine. 154 (6): 1257–1268. Bibcode:2017GeoM..154.1257S. doi:10.1017/S001675681700036X. S2CID 131980880.
  325. ^ a b c Min Shi; Qinglai Feng; Maliha Zareen Khan; Shixing Zhu (2017). "An eukaryote-bearing microbiota from the early mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance". Precambrian Research. 303: 709–726. Bibcode:2017PreR..303..709S. doi:10.1016/j.precamres.2017.09.013.
  326. ^ a b c d L. Morais; D.J.G. Lahr; I.D. Rudnitzki; B.T. Freitas; G.R. Romero; S.M. Porter; A.H. Knoll; T.R. Fairchild (2019). "Insights into vase-shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries". Journal of Paleontology. 93 (4): 612–627. Bibcode:2019JPal...93..612M. doi:10.1017/jpa.2019.6. S2CID 189991021.
  327. ^ Yifan Xiao; Noritoshi Suzuki; Weihong He (2017). "Applications and limitations of micro-XCT imaging in the studies of Permian radiolarians: A new genus with bi-polar main spines". Acta Palaeontologica Polonica. 62 (3): 647–656. doi:10.4202/app.00367.2017.
  328. ^ a b c Stefan Bengtson; Therese Sallstedt; Veneta Belivanova; Martin Whitehouse (2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLOS Biology. 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791.
  329. ^ Qing Tang; Nigel C. Hughes; N. Ryan McKenzie; Paul M. Myrow; Shuhai Xiao (2017). "Late Mesoproterozoic – early Neoproterozoic organic-walled microfossils from the Madhubani Group of the Ganga Valley, northern India". Palaeontology. 60 (6): 869–891. doi:10.1111/pala.12323.
  330. ^ Ye Wang; Yue Wang; Wei Du (2017). "A rare disc-like holdfast of the Ediacaran macroalga from South China". Journal of Paleontology. 91 (6): 1091–1101. Bibcode:2017JPal...91.1091W. doi:10.1017/jpa.2017.43. S2CID 90112117.
  331. ^ E. Cruz-Abad; L. Consorti; M. Di Lucia; M. Parente; E. Caus (2017). "Fissumella motolae n. gen. n. sp., a new soritoidean (Foraminifera) from the lowermost Albian carbonate platform facies of central and southern Italy". Cretaceous Research. 78: 1–7. Bibcode:2017CrRes..78....1C. doi:10.1016/j.cretres.2017.05.024.
  332. ^ a b Felix Schlagintweit; Koorosh Rashidi (2017). "Persiella pseudolituus n. gen., n. sp., and Flabelloperforata tarburensis n. gen., n. sp., two new larger benthic foraminifera from the Upper Maastrichtian of Iran" (PDF). Acta Palaeontologica Romaniae. 13 (2): 3–19. Archived from the original (PDF) on 2018-03-21. Retrieved 2018-03-20.
  333. ^ Zbigniew Szczepanik; Thomas Servais; Anna Żylińska (2017). "Very large acritarchs from the Furongian (upper Cambrian) rocks of the Holy Cross Mountains, central Poland". Palynology. 41 (sup1): 10–22. Bibcode:2017Paly...41S..10S. doi:10.1080/01916122.2017.1366205. S2CID 134279617.
  334. ^ Heda Agić; Małgorzata Moczydłowska; Leiming Yin (2017). "Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton - a window into the early eukaryote evolution". Precambrian Research. 297: 101–130. Bibcode:2017PreR..297..101A. doi:10.1016/j.precamres.2017.04.042.
  335. ^ Sam W. Heads; Andrew N. Miller; J. Leland Crane; M. Jared Thomas; Danielle M. Ruffatto; Andrew S. Methven; Daniel B. Raudabaugh; Yinan Wang (2017). "The oldest fossil mushroom". PLOS ONE. 12 (6): e0178327. Bibcode:2017PLoSO..1278327H. doi:10.1371/journal.pone.0178327. PMC 5462346. PMID 28591180.
  336. ^ Sam W. Heads; Andrew N. Miller; J. Leland Crane (2017). "On the name of the oldest fossil mushroom". Mycological Progress. 16 (11–12): 1071–1072. doi:10.1007/s11557-017-1355-4. S2CID 36044870.
  337. ^ Michael Krings; Hans Kerp; Edith L. Taylor; Carla J. Harper (2017). "Hagenococcus aggregatus nov. gen. et sp., a microscopic, colony-forming alga from the 410-million-yr-old Rhynie chert". Nova Hedwigia. 105 (1–2): 205–217. doi:10.1127/nova_hedwigia/2017/0406.
  338. ^ Michael A. Kaminski; Anna Waskowska; Septriandi Chan (2017). "Haplophragmoides arcticus, n. sp., a new species from the Pleistocene of the Central Arctic Ocean". Micropaleontology. 62 (6): 509–513. Bibcode:2017MiPal..62..509K. doi:10.47894/mpal.62.6.05.
  339. ^ a b c Luana Morais; Thomas Rich Fairchild; Daniel J.G. Lahr; Isaac D. Rudnitzki; J. William Schopf; Amanda K. Garcia; Anatoliy B. Kudryavtsev; Guilherme R. Romero (2017). "Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization". Journal of Paleontology. 91 (3): 393–406. Bibcode:2017JPal...91..393M. doi:10.1017/jpa.2017.16. S2CID 54530838.
  340. ^ Paula Dentzien-Dias; George Poinar (Jr.); Heitor Francischini (2017). "A new actinomycete from a Guadalupian vertebrate coprolite from Brazil". Historical Biology: An International Journal of Paleobiology. 29 (6): 770–776. doi:10.1080/08912963.2016.1241247. S2CID 89081153.
  341. ^ George Poinar, Jr. (2017). "Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms". Journal of Medical Entomology. 54 (4): 895–900. doi:10.1093/jme/tjw247. PMID 28399212. S2CID 205177122.
  342. ^ Daniel Ţabără; Hamid Slimani; Silvia Mare; Carmen Mariana Chira (2017). "Integrated biostratigraphy and palaeoenvironmental interpretation of the Upper Cretaceous to Paleocene succession in the northern Moldavidian Domain (Eastern Carpathians, Romania)". Cretaceous Research. 77: 102–123. Bibcode:2017CrRes..77..102T. doi:10.1016/j.cretres.2017.04.021.
  343. ^ a b c d e f g Paul R. Bown; Jeremy R. Young; Jacqueline A. Lees (2017). "On the Cretaceous origin of the Order Syracosphaerales and the genus Syracosphaera". Journal of Micropalaeontology. 36 (2): 153–165. Bibcode:2017JMicP..36..153B. doi:10.1144/jmpaleo2016-001. S2CID 53409780.
  344. ^ Rui O. B. P. da Gama (2017). "Spearlithus, a new Pleistocene calcareous nannofossil genus from shallow marine settings of the Dominican Republic". Micropaleontology. 62 (4): 273–291. Bibcode:2017MiPal..62..273D. doi:10.47894/mpal.62.4.01. S2CID 248380078.
  345. ^ M. Görmüş; F. A. Ameen Lawa; Q.A.M. Al Nuaimy (2017). "Suraqalatia brasieri n.gen., n.sp. (larger foraminifera) from the Maastrichtian of Sulaimani area in northern Iraq". Arabian Journal of Geosciences. 10 (16): Article 365. doi:10.1007/s12517-017-3145-3. S2CID 133941214.
  346. ^ a b George Poinar Jr. (2017). "Two new genera, Mycophoris gen. nov., (Orchidaceae) and Synaptomitus gen. nov. (Basidiomycota) based on a fossil seed with developing embryo and associated fungus in Dominican amber". Botany. 95 (1): 1–8. doi:10.1139/cjb-2016-0118.
  347. ^ Marc-Andre Selosse; Mark Brundrett; John Dearnaley; Vincent S.F.T. Merckx; Finn Rasmussen; Lawrence W. Zettler; Hanne N. Rasmussen (2017). "Why Mycophoris is not an orchid seedling, and why Synaptomitus is not a fungal symbiont within this fossil". Botany. 95 (9): 865–868. doi:10.1139/cjb-2017-0038.
  348. ^ Felix Schlagintweit; Koorosh Rashidi; Farzaneh Barani (2017). "Tarburina zagrosiana n. gen., n. sp., a new larger benthic porcelaneous foraminifer from the late Maastrichtian of Iran". Journal of Micropalaeontology. 36 (2): 183–190. doi:10.1144/jmpaleo2016-019. S2CID 56370885.
  349. ^ Michael Krings; Carla J. Harper (2017). "A mantled fungal reproductive unit from the Lower Devonian Windyfield chert, Scotland, with prominent spines and otherwise shaped projections extending out from the mantle". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 201–211. doi:10.1127/njgpa/2017/0677.
  350. ^ Min Shi; Qing-Lai Feng; Maliha Zareen Khan; Stanley Awramik; Shi-Xing Zhu (2017). "Silicified microbiota from the Paleoproterozoic Dahongyu Formation, Tianjin, China". Journal of Paleontology. 91 (3): 369–392. Bibcode:2017JPal...91..369S. doi:10.1017/jpa.2016.163. S2CID 132359467.
  351. ^ Matthijs A. Smit; Klaus Mezger (2017). "Earth's early O2 cycle suppressed by primitive continents". Nature Geoscience. 10 (10): 788–792. Bibcode:2017NatGe..10..788S. doi:10.1038/ngeo3030.
  352. ^ Paul F. Hoffman; Dorian S. Abbot; Yosef Ashkenazy; Douglas I. Benn; Jochen J. Brocks; Phoebe A. Cohen; Grant M. Cox; Jessica R. Creveling; Yannick Donnadieu; Douglas H. Erwin; Ian J. Fairchild; David Ferreira; Jason C. Goodman; Galen P. Halverson; Malte F. Jansen; Guillaume Le Hir; Gordon D. Love; Francis A. Macdonald; Adam C. Maloof; Camille A. Partin; Gilles Ramstein; Brian E. J. Rose; Catherine V. Rose; Peter M. Sadler; Eli Tziperman; Aiko Voigt; Stephen G. Warren (2017). "Snowball Earth climate dynamics and Cryogenian geology-geobiology". Science Advances. 3 (11): e1600983. Bibcode:2017SciA....3E0983H. doi:10.1126/sciadv.1600983. PMC 5677351. PMID 29134193.
  353. ^ Jochen J. Brocks; Amber J. M. Jarrett; Eva Sirantoine; Christian Hallmann; Yosuke Hoshino; Tharika Liyanage (2017). "The rise of algae in Cryogenian oceans and the emergence of animals". Nature. 548 (7669): 578–581. Bibcode:2017Natur.548..578B. doi:10.1038/nature23457. PMID 28813409. S2CID 205258987.
  354. ^ Anatoly D. Erlykin; David A. T. Harper; Terry Sloan; Arnold W. Wolfendale (2017). "Mass extinctions over the last 500 myr: an astronomical cause?" (PDF). Palaeontology. 60 (2): 159–167. Bibcode:2017Palgy..60..159E. doi:10.1111/pala.12283. S2CID 133407217.
  355. ^ Junpeng Zhang; Tailiang Fan; Yuandong Zhang; Gary G. Lash; Yifan Li; Yue Wu (2017). "Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation". Scientific Reports. 7 (1): Article number 8550. Bibcode:2017NatSR...7.8550Z. doi:10.1038/s41598-017-07904-3. PMC 5561082. PMID 28819268.
  356. ^ Michael Tatzel; Friedhelm von Blanckenburg; Marcus Oelze; Julien Bouchez; Dorothee Hippler (2017). "Late Neoproterozoic seawater oxygenation by siliceous sponges". Nature Communications. 8 (1): Article number 621. Bibcode:2017NatCo...8..621T. doi:10.1038/s41467-017-00586-5. PMC 5606986. PMID 28931817.
  357. ^ Pedro Cermeño; Michael J. Benton; Óscar Paz; Christian Vérard (2017). "Trophic and tectonic limits to the global increase of marine invertebrate diversity". Scientific Reports. 7 (1): Article number 15969. Bibcode:2017NatSR...715969C. doi:10.1038/s41598-017-16257-w. PMC 5698323. PMID 29162866.
  358. ^ Cole T. Edwards; Matthew R. Saltzman; Dana L. Royer; David A. Fike (2017). "Oxygenation as a driver of the Great Ordovician Biodiversification Event". Nature Geoscience. 10 (12): 925–929. Bibcode:2017NatGe..10..925E. doi:10.1038/s41561-017-0006-3. S2CID 134884032.
  359. ^ Georg Feulner (2017). "Formation of most of our coal brought Earth close to global glaciation". Proceedings of the National Academy of Sciences of the United States of America. 114 (43): 11333–11337. Bibcode:2017PNAS..11411333F. doi:10.1073/pnas.1712062114. PMC 5664543. PMID 29073052.
  360. ^ Massimo Bernardi; Fabio Massimo Petti; Evelyn Kustatscher; Matthias Franz; Christoph Hartkopf-Fröder; Conrad C. Labandeira; Torsten Wappler; Johanna H.A. van Konijnenburg-van Cittert; Brandon R. Peecook; Kenneth D. Angielczyk (2017). "Late Permian (Lopingian) terrestrial ecosystems: A global comparison with new data from the low-latitude Bletterbach Biota". Earth-Science Reviews. 175: 18–43. Bibcode:2017ESRv..175...18B. doi:10.1016/j.earscirev.2017.10.002.
  361. ^ S. D. Burgess; J. D. Muirhead; S. A. Bowring (2017). "Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction". Nature Communications. 8 (1): Article number 164. Bibcode:2017NatCo...8..164B. doi:10.1038/s41467-017-00083-9. PMC 5537227. PMID 28761160.
  362. ^ Pia A. Viglietti; Bruce S. Rubidge; Roger M. H. Smith (2017). "New Late Permian tectonic model for South Africa's Karoo Basin: foreland tectonics and climate change before the end-Permian crisis". Scientific Reports. 7 (1): Article number 10861. Bibcode:2017NatSR...710861V. doi:10.1038/s41598-017-09853-3. PMC 5589945. PMID 28883403.
  363. ^ Rowan C. Martindale; William J. Foster; Felicitász Velledits (2017). "The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 100–115. Bibcode:2019PPP...513..100M. doi:10.1016/j.palaeo.2017.08.014. S2CID 135338869.
  364. ^ William J. Foster; Silvia Danise; Gregory D. Price; Richard J. Twitchett (2017). "Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy". PLOS ONE. 12 (3): e0172321. Bibcode:2017PLoSO..1272321F. doi:10.1371/journal.pone.0172321. PMC 5351997. PMID 28296886.
  365. ^ J.H.F.L. Davies; A. Marzoli; H. Bertrand; N. Youbi; M. Ernesto; U. Schaltegger (2017). "End-Triassic mass extinction started by intrusive CAMP activity". Nature Communications. 8: Article number 15596. Bibcode:2017NatCo...815596D. doi:10.1038/ncomms15596. PMC 5460029. PMID 28561025.
  366. ^ Lawrence M. E. Percival; Micha Ruhl; Stephen P. Hesselbo; Hugh C. Jenkyns; Tamsin A. Mather; Jessica H. Whiteside (2017). "Mercury evidence for pulsed volcanism during the end-Triassic mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 114 (30): 7929–7934. Bibcode:2017PNAS..114.7929P. doi:10.1073/pnas.1705378114. PMC 5544315. PMID 28630294.
  367. ^ Adam B. Jost; Aviv Bachan; Bas van de Schootbrugge; Kimberly V. Lau; Karrie L. Weaver; Kate Maher; Jonathan L. Payne (2017). "Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction". Geochemistry, Geophysics, Geosystems. 18 (8): 3093–3108. Bibcode:2017GGG....18.3093J. doi:10.1002/2017GC006941. hdl:1874/362214. S2CID 133679444.
  368. ^ Denver Warwick Fowler (2017). "Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America". PLOS ONE. 12 (11): e0188426. Bibcode:2017PLoSO..1288426F. doi:10.1371/journal.pone.0188426. PMC 5699823. PMID 29166406.
  369. ^ Charles G. Bardeen; Rolando R. Garcia; Owen B. Toon; Andrew J. Conley (2017). "On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections". Proceedings of the National Academy of Sciences of the United States of America. 114 (36): E7415–E7424. Bibcode:2017PNAS..114E7415B. doi:10.1073/pnas.1708980114. PMC 5594694. PMID 28827324.
  370. ^ Julia Brugger; Georg Feulner; Stefan Petri (2017). "Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous" (PDF). Geophysical Research Letters. 44 (1): 419–427. Bibcode:2017GeoRL..44..419B. doi:10.1002/2016GL072241. S2CID 53631053.
  371. ^ Natalia Artemieva; Joanna Morgan; Expedition 364 Science Party (2017). "Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub". Geophysical Research Letters. 44 (20): 10, 180–10, 188. Bibcode:2017GeoRL..4410180A. doi:10.1002/2017GL074879. hdl:10044/1/51225.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  372. ^ Kunio Kaiho; Naga Oshima (2017). "Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction". Scientific Reports. 7 (1): Article number 14855. Bibcode:2017NatSR...714855K. doi:10.1038/s41598-017-14199-x. PMC 5680197. PMID 29123110.
  373. ^ Thomas S. Tobin (2017). "Recognition of a likely two phased extinction at the K-Pg boundary in Antarctica". Scientific Reports. 7 (1): Article number 16317. Bibcode:2017NatSR...716317T. doi:10.1038/s41598-017-16515-x. PMC 5701184. PMID 29176556.
  374. ^ Nicholas J. Minter; Luis A. Buatois; M. Gabriela Mángano; Neil S. Davies; Martin R. Gibling; Robert B. MacNaughton; Conrad C. Labandeira (2017). "Early bursts of diversification defined the faunal colonization of land". Nature Ecology & Evolution. 1 (7): Article number 0175. doi:10.1038/s41559-017-0175. S2CID 59988716.
  375. ^ Stephanie E. Suarez; Michael E. Brookfield; Elizabeth J. Catlos; Daniel F. Stöckli (2017). "A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal". PLOS ONE. 12 (6): e0179262. Bibcode:2017PLoSO..1279262S. doi:10.1371/journal.pone.0179262. PMC 5489152. PMID 28658320.
  376. ^ Chad M. Eliason; Leah Hudson; Taylor Watts; Hector Garza; Julia A. Clarke (2017). "Exceptional preservation and the fossil record of tetrapod integument". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20170556. doi:10.1098/rspb.2017.0556. PMC 5597822. PMID 28878057.
  377. ^ Neil Brocklehurst; Michael O. Day; Bruce S. Rubidge; Jörg Fröbisch (2017). "Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian". Proceedings of the Royal Society B: Biological Sciences. 284 (1852): 20170231. doi:10.1098/rspb.2017.0231. PMC 5394676. PMID 28381616.
  378. ^ Roger A. Close; Roger B.J. Benson; Paul Upchurch; Richard J. Butler (2017). "Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification". Nature Communications. 8: Article number 15381. Bibcode:2017NatCo...815381C. doi:10.1038/ncomms15381. PMC 5458146. PMID 28530240.
  379. ^ Matteo Fabbri; Nicolás Mongiardino Koch; Adam C. Pritchard; Michael Hanson; Eva Hoffman; Gabriel S. Bever; Amy M. Balanoff; Zachary S. Morris; Daniel J. Field; Jasmin Camacho; Timothy B. Rowe; Mark A. Norell; Roger M. Smith; Arhat Abzhanov; Bhart-Anjan S. Bhullar (2017). "The skull roof tracks the brain during the evolution and development of reptiles including birds" (PDF). Nature Ecology & Evolution. 1 (10): 1543–1550. doi:10.1038/s41559-017-0288-2. PMID 29185519. S2CID 3326766.
  380. ^ Jeremy E. Martin; Peggy Vincent; Théo Tacail; Fatima Khaldoune; Essaid Jourani; Nathalie Bardet; Vincent Balter (2017). "Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction". Current Biology. 27 (11): 1641–1644.e2. doi:10.1016/j.cub.2017.04.043. PMID 28552352. S2CID 4161031.
  381. ^ Martin Qvarnström; Grzegorz Niedźwiedzki; Paul Tafforeau; Živil Žigaitė; Per E. Ahlberg (2017). "Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data". Scientific Reports. 7 (1): Article number 2723. Bibcode:2017NatSR...7.2723Q. doi:10.1038/s41598-017-02893-9. PMC 5457397. PMID 28578409.
  382. ^ Piotr Bajdek; Krzysztof Owocki; Andrey G. Sennikov; Valeriy K. Golubev; Grzegorz Niedźwiedzki (2017). "Residues from the Upper Permian carnivore coprolites from Vyazniki in Russia - key questions in reconstruction of feeding habits". Palaeogeography, Palaeoclimatology, Palaeoecology. 482: 70–82. Bibcode:2017PPP...482...70B. doi:10.1016/j.palaeo.2017.05.033.
  383. ^ Martín D. Ezcurra; Lucas E. Fiorelli; Agustín G. Martinelli; Sebastián Rocher; M. Belén von Baczko; Miguel Ezpeleta; Jeremías R. A. Taborda; E. Martín Hechenleitner; M. Jimena Trotteyn; Julia B. Desojo (2017). "Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea". Nature Ecology & Evolution. 1 (10): 1477–1483. doi:10.1038/s41559-017-0305-5. hdl:11336/41466. PMID 29185518. S2CID 10007967.
  384. ^ David J. Button; Graeme T. Lloyd; Martín D. Ezcurra; Richard J. Butler (2017). "Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea". Nature Communications. 8 (1): Article number 733. Bibcode:2017NatCo...8..733B. doi:10.1038/s41467-017-00827-7. PMC 5635108. PMID 29018290.
  385. ^ Michael Frese; Gerda Gloy; Rolf G. Oberprieler; Damian B. Gore (2017). "Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping". PLOS ONE. 12 (6): e0179029. Bibcode:2017PLoSO..1279029F. doi:10.1371/journal.pone.0179029. PMC 5459505. PMID 28582427.
  386. ^ Adiël A. Klompmaker; Michał Kowalewski; John Warren Huntley; Seth Finnegan (2017). "Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems". Science. 356 (6343): 1178–1180. doi:10.1126/science.aam7468. PMID 28619943. S2CID 206657244.
  387. ^ S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2017). "Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes". Nature Communications. 8 (1): Article number 1134. Bibcode:2017NatCo...8.1134B. doi:10.1038/s41467-017-01225-9. PMC 5656689. PMID 29070888.
  388. ^ David Evans; Marcus P. S. Badger; Gavin L. Foster; Michael J. Henehan; Caroline H. Lear; James C. Zachos (2018). "No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record". Nature Communications. 9 (1): Article number 2875. Bibcode:2018NatCo...9.2875E. doi:10.1038/s41467-018-05303-4. PMC 6056492. PMID 30038330.
  389. ^ S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2018). "Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record'". Nature Communications. 9 (1): Article number 2874. Bibcode:2018NatCo...9.2874B. doi:10.1038/s41467-018-05304-3. PMC 6056461. PMID 30038223.
  390. ^ Sean P. S. Gulick; Amelia E. Shevenell; Aleksandr Montelli; Rodrigo Fernandez; Catherine Smith; Sophie Warny; Steven M. Bohaty; Charlotte Sjunneskog; Amy Leventer; Bruce Frederick; Donald D. Blankenship (2017). "Initiation and long-term instability of the East Antarctic Ice Sheet" (PDF). Nature. 552 (7684): 225–229. Bibcode:2017Natur.552..225G. doi:10.1038/nature25026. PMID 29239353. S2CID 4404071.
  391. ^ Sandra Kirtland Turner; Pincelli M. Hull; Lee R. Kump; Andy Ridgwell (2017). "A probabilistic assessment of the rapidity of PETM onset". Nature Communications. 8 (1): Article number 353. Bibcode:2017NatCo...8..353K. doi:10.1038/s41467-017-00292-2. PMC 5572461. PMID 28842564.
  392. ^ Marcus Gutjahr; Andy Ridgwell; Philip F. Sexton; Eleni Anagnostou; Paul N. Pearson; Heiko Pälike; Richard D. Norris; Ellen Thomas; Gavin L. Foster (2017). "Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum". Nature. 548 (7669): 573–577. Bibcode:2017Natur.548..573G. doi:10.1038/nature23646. PMC 5582631. PMID 28858305.
  393. ^ Orangel Aguilera; Zoneibe Luz; Jorge D. Carrillo-Briceño; László Kocsis; Torsten W. Vennemann; Peter Mann de Toledo; Afonso Nogueira; Kamilla Borges Amorim; Heloísa Moraes-Santos; Marcia Reis Polck; Maria de Lourdes Ruivo; Ana Paula Linhares; Cassiano Monteiro-Neto (2017). "Neogene sharks and rays from the Brazilian 'Blue Amazon'". PLOS ONE. 12 (8): e0182740. Bibcode:2017PLoSO..1282740A. doi:10.1371/journal.pone.0182740. PMC 5568136. PMID 28832664.
  394. ^ Pietro Sternai; Luca Caricchi; Daniel Garcia-Castellanos; Laurent Jolivet; Tom E. Sheldrake; Sébastien Castelltort (2017). "Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis". Nature Geoscience. 10 (10): 783–787. Bibcode:2017NatGe..10..783S. doi:10.1038/ngeo3032. PMC 5654511. PMID 29081834.
  395. ^ Bas de Boer; Alan M. Haywood; Aisling M. Dolan; Stephen J. Hunter; Caroline L. Prescott (2017). "The transient response of ice volume to orbital forcing during the warm late Pliocene". Geophysical Research Letters. 44 (20): 10, 486–10, 494. Bibcode:2017GeoRL..4410486D. doi:10.1002/2017GL073535.
  396. ^ Catalina Pimiento; John N. Griffin; Christopher F. Clements; Daniele Silvestro; Sara Varela; Mark D. Uhen; Carlos Jaramillo (2017). "The Pliocene marine megafauna extinction and its impact on functional diversity" (PDF). Nature Ecology & Evolution. 1 (8): 1100–1106. doi:10.1038/s41559-017-0223-6. PMID 29046566. S2CID 3639394.
  397. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; John M. Harris; Glynis E. Jehle; Thure E. Cerling (2017). "Aridity and hominin environments". Proceedings of the National Academy of Sciences of the United States of America. 114 (28): 7331–7336. Bibcode:2017PNAS..114.7331B. doi:10.1073/pnas.1700597114. PMC 5514716. PMID 28652366.
  398. ^ Jessica E. Tierney; Peter B. deMenocal; Paul D. Zander (2017). "A climatic context for the out-of-Africa migration". Geology. 45 (11): 1023–1026. Bibcode:2017Geo....45.1023T. doi:10.1130/G39457.1.
  399. ^ Samuel T. Turvey; Jennifer J. Crees; James Hansford; Timothy E. Jeffree; Nick Crumpton; Iwan Kurniawan; Erick Setiyabudi; Thomas Guillerme; Umbu Paranggarimu; Anthony Dosseto; Gerrit D. van den Bergh (2017). "Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution". Proceedings of the Royal Society B: Biological Sciences. 284 (1861): 20171278. doi:10.1098/rspb.2017.1278. PMC 5577490. PMID 28855367.
  400. ^ Yonatan Sahle; Sireen El Zaatari; Tim D. White (2017). "Hominid butchers and biting crocodiles in the African Plio–Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. 114 (50): 13164–13169. Bibcode:2017PNAS..11413164S. doi:10.1073/pnas.1716317114. PMC 5740633. PMID 29109249.
  401. ^ Jonathan T. Hagstrum; Richard B. Firestone; Allen West; James C. Weaver; Ted E. Bunch (2017). "Impact-related microspherules in Late Pleistocene Alaskan and Yukon "muck" deposits signify recurrent episodes of catastrophic emplacement". Scientific Reports. 7 (1): Article number 16620. Bibcode:2017NatSR...716620H. doi:10.1038/s41598-017-16958-2. PMC 5709379. PMID 29192242.
  402. ^ M. Timothy Rabanus-Wallace; Matthew J. Wooller; Grant D. Zazula; Elen Shute; A. Hope Jahren; Pavel Kosintsev; James A. Burns; James Breen; Bastien Llamas; Alan Cooper (2017). "Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions". Nature Ecology & Evolution. 1 (5): Article number 0125. doi:10.1038/s41559-017-0125. PMID 28812683. S2CID 4473573.