Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2017.
| |||
---|---|---|---|
Flora
editCnidarians
editResearch
edit- Ou et al. (2017) consider early Cambrian species Galeaplumosus abilus and Chengjiangopenna wangii to be junior synonyms of Xianguangia sinica, interpret fossils attributed to members of these species as parts of the same organism and consider X. sinica to be likely stem-cnidarian.[2]
- Pseudooides prima is interpreted as a cnidarian and a senior synonym of Hexaconularia sichuanensis by Duan et al. (2017).[3]
- Fossilized cnidarian medusae are described from the Cambrian Zabriskie Quartzite (California, United States) by Sappenfield, Tarhan & Droser (2017), representing the oldest macrofossil evidence of cnidarian medusae from the Phanerozoic reported so far.[4]
- A study on the morphology of phosphatic tubes of Sphenothallus from the Early Ordovician Fenxiang Formation (China), as well as the Silurian and Early Devonian of Podolia (Ukraine), and its implications for the evolution of symmetry in the body plan of cnidarians is published by Dzik, Baliński & Sun (2017).[5]
- A study on the succession of coral assemblages through the Ordovician–Silurian transition in South China is published by Wang et al. (2017).[6]
- A study on the extant and fossil stony corals, intending to determine whether fossil corals lived in symbiosis with photosynthesizing dinoflagellates, is published by Tornabene et al. (2017).[7]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Coen-Aubert |
A rugose coral belonging to the family Ptenophyllidae. |
|||||
Sp. nov |
Valid |
Coen-Aubert |
A rugose coral belonging to the family Ptenophyllidae. |
|||||
Sp. nov |
Valid |
Zhen, Wang & Percival |
Late Ordovician |
|||||
Sp. nov |
Valid |
Niko & Fujikawa |
Akiyoshi Limestone Group |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Bothrophyllidae. |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Bothrophyllidae. |
|||||
Sp. nov |
Valid |
Peel |
A possible member of Octocorallia. |
|||||
Sp. nov |
Valid |
Coen-Aubert |
A rugose coral belonging to the family Disphyllidae. |
|||||
Sp. nov |
Valid |
Coen-Aubert |
A rugose coral belonging to the family Disphyllidae. |
|||||
Gen. et sp. nov |
Valid |
Liao & Ma |
Devonian (Givetian) |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Aulophyllidae. |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Aulophyllidae. |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Aulophyllidae. |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Aulophyllidae. |
|||||
Sp. nov |
Valid |
Bamber & Rodríguez in Bamber et al. |
A rugose coral. |
|||||
Gen. et sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian–Pliensbachian) |
A stony coral belonging to the family Latomeandridae. The type species is Fungiaphyllia communis. |
||||
Nom. nov |
Valid |
Lathuilière, Charbonnier & Pacaud |
A coral; a replacement name for Palaeocyathus Alloiteau (1956). |
|||||
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian) |
A stony coral belonging to the family Tropiastraeidae, a species of Guembelastraea. |
||||
Sp. nov |
Valid |
Rodríguez & Somerville in Rodríguez, Somerville & Said |
Azrou-Khenifra Basin |
A rugose coral belonging to the family Lithostrotionidae. |
||||
Sp. nov |
Valid |
Coen-Aubert |
A rugose coral belonging to the family Phillipsastreidae. |
|||||
Nina[11] |
Gen. et 3 sp. et comb. nov |
Junior homonym |
Fedorowski |
A rugose coral belonging to the family Bothrophyllidae. The type species is N. donetsiana; genus also includes new species N. dibimitaria and N. magna, as well as "Bothrophyllum" berestovensis Vassilyuk (1960). The generic name is preoccupied by Nina Horsfield (1829). |
||||
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian) |
A stony coral belonging to the family Oppelismiliidae, a species of Oppelismilia. |
||||
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian–early Sinemurian) |
A stony coral belonging to the family Parepismiliidae, a species of Parepismilia. |
||||
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian) |
A stony coral belonging to the family Parepismiliidae, a species of Parepismilia. |
||||
Gen. et comb. et sp. nov |
Valid |
Cairns |
A flabellid coral. Genus includes P. deltoideus (Duncan, 1864), P. corniculatus (Dennant, 1899), P. elongatus (Duncan, 1864), P. pueblensis (Dennant, 1903), P. inflectus (Dennant, 1903) and P. magnus (Dennant, 1904), as well as new species P. cudmorei. |
|||||
Sp. nov |
Valid |
Niko, Suzuki & Taguchi |
Bihoku Group |
A stony coral. |
||||
Sp. nov |
Valid |
Niko |
Early Permian |
Funafuseyama Limestone |
A tabulate coral belonging to the order Favositida and the family Micheliniidae. |
|||
Gen. et sp. nov |
Valid |
Liu et al. |
A probable crown jellyfish belonging to the family Olivooidae. The type species is Q. necopinus. |
|||||
Sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Aulophyllidae. |
|||||
Sp. nov |
Valid |
Niko, Ibaraki & Tazawa |
Middle Devonian |
A tabulate coral belonging to the order Favositida and the family Alveolitidae. |
||||
Gen. et sp. nov |
Valid |
Wang et al. |
Early Cambrian |
A member of Medusozoa belonging to the family Olivooidae. The type species is S. petalon. |
||||
Sp. nov |
Valid |
Baron-Szabo |
Early Cretaceous (late Aptian to Albian) |
A stony coral belonging to the family Micrabaciidae. |
||||
Gen. et sp. nov |
Valid |
Baliński & Sun |
Ordovician (early Floian) |
A black coral related to Sinopathes reptans. The type species is S. radicatus. |
||||
Gen. et sp. nov |
Valid |
Fedorowski |
A rugose coral belonging to the family Aulophyllidae. The type species is V. cavum. |
|||||
Sp. nov |
Valid |
Bamber & Rodríguez in Bamber et al. |
Carboniferous (Mississippian) |
A rugose coral. |
||||
Zaphrentites lerandi[15] |
Sp. nov |
Valid |
Bamber & Rodríguez in Bamber et al. |
Carboniferous (Mississippian) |
A rugose coral. |
Arthropods
editBryozoans
editResearch
edit- Epizoic bryozoans are reported on fossil crabs from the Miocene Mishan Formation (Iran) by Key et al. (2017).[27]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Ernst & Vachard |
Carboniferous (middle Pennsylvanian) |
|||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Adeonidae. |
||||
Sp. nov |
Valid |
Martha, Niebuhr & Scholz |
Late Cretaceous (mid-late Turonian) |
Strehlen Formation |
||||
Sp. nov |
Valid |
Ernst et al. |
A bryozoan. |
|||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Chasmatoporidae. |
|||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||||
Gen. et sp. nov |
Valid |
Di Martino et al. |
A cheilostome bryozoan. Genus includes new species B. pseudofedora. |
|||||
Sp. nov |
Valid |
Di Martino et al. |
Nukumaru Limestone |
A member of Ctenostomatida belonging to the superfamily Vesicularioidea and the family Buskiidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cheiloporinidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Colatooeciidae. |
||||
Sp. nov |
Valid |
Ernst et al. |
Devonian (Frasnian) |
|||||
Sp. nov |
Valid |
Viskova & Pakhnevich |
A bryozoan belonging to the class Stenolaemata and the order Tubuliporida. |
|||||
Sp. nov |
Valid |
Sonar & Pawar |
A member of the family Catenicellidae. |
|||||
Sp. nov |
Valid |
Tolokonnikova, Kalvoda & Kumpan |
||||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Romancheinidae. |
||||
Sp. nov |
Valid |
Ernst et al. |
Devonian (Frasnian) |
A rhabdomesine cryptostome bryozoan. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Exechonellidae. |
||||
Sp. nov |
Valid |
Zágoršek, Yazdi & Bahrami |
Miocene |
Qom Formation |
||||
Sp. nov |
Valid |
Ernst & Vachard |
Carboniferous (middle Pennsylvanian) |
|||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Acanthocladiidae. |
|||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Onychocellidae. |
||||
Sp. nov |
Valid |
Taylor & Martha |
Late Cretaceous (Cenomanian) |
Beer Head Limestone Formation |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cheiloporinidae. |
||||
Sp. nov |
Valid |
Di Martino et al. |
||||||
Gen. et sp. nov |
Valid |
Martha, Niebuhr & Scholz |
Late Cretaceous (mid-late Turonian) |
Strehlen Formation |
A cheilostome bryozoan genus belonging to the family Calloporidae. Type species H. pavonina; genus also includes Membranipora procurrens Brydone, 1929. |
|||
Gen. et sp. nov |
Valid |
Martha & Taylor |
A cheilostome bryozoan. The type species is J. kidwellae. |
|||||
Kalvariella antiqua[32] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Acanthocladiidae. |
||||
Sp. nov |
Valid |
Di Martino et al. |
||||||
Sp. nov |
Valid |
Di Martino et al. |
||||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Margarettidae. |
||||
Sp. nov |
Valid |
Ramalho, Távora & Zagorsek |
Early Miocene |
Pirabas Formation |
A member of Lepralielloidea belonging to the family Metrarabdotosidae. |
|||
Sp. nov |
Valid |
Ramalho, Távora & Zagorsek |
Early Miocene |
Pirabas Formation |
A member of Lepralielloidea belonging to the family Metrarabdotosidae. |
|||
Sp. nov |
Valid |
Ramalho, Távora & Zagorsek |
Early Miocene |
Pirabas Formation |
A member of Lepralielloidea belonging to the family Metrarabdotosidae. |
|||
Sp. nov |
Valid |
Viskova & Pakhnevich |
A bryozoan belonging to the suborder Tubuliporina and the family Oncousoeciidae. |
|||||
Sp. nov |
Valid |
Di Martino et al. |
Nukumaru Limestone |
A member of the family Microporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Quadricellariidae. |
||||
Sp. nov |
Valid |
Zágoršek, Yazdi & Bahrami |
Miocene |
Qom Formation |
||||
Sp. nov |
Valid |
Martha, Niebuhr & Scholz |
Late Cretaceous (late Cenomanian) |
Dölzschen Formation |
A cheilostome bryozoan. Taylor, Martha & Gordon (2018) transferred this species to the genus Kamilocella.[43] |
|||
Sp. nov |
Valid |
Martha, Niebuhr & Scholz |
Late Cretaceous (late Cenomanian) |
Dölzschen Formation |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Candidae. |
||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Septoporidae. |
|||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Septoporidae. |
|||||
Gen. et sp. nov |
Valid |
Wyse Jackson, Ernst & Suárez Andrés |
A member of Cryptostomata belonging to the family Rhabdomesidae. The type species is P. regularis. |
|||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Phidoloporidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Phidoloporidae. |
||||
Sp. nov |
Valid |
Zágoršek, Yazdi & Bahrami |
Miocene |
Qom Formation |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cribrilinidae. |
||||
Sp. nov |
Valid |
Fedorov, Koromyslova & Martha |
An esthonioporate bryozoan belonging to the family Revalotrypidae. |
|||||
Sp. nov |
Valid |
Fedorov, Koromyslova & Martha |
An esthonioporate bryozoan belonging to the family Revalotrypidae. |
|||||
Gen. et sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A Schizoporella-like cheilostome bryozoan of uncertain phylogenetic placement. The type species is S. nancyae. |
||||
Sp. nov |
Valid |
López-Gappa, Pérez & Griffin |
Early Miocene |
A bryozoan belonging to the family Selenariidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cribrilinidae. |
||||
Sp. nov |
Valid |
Gordon, Voje & Taylor |
Early Pleistocene |
A member of Cheilostomata belonging to the family Steginoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Schizoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Schizoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Trypostegidae. |
||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Celleporidae. |
||||
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||||
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Vicidae. |
||||
Sp. nov |
Valid |
Taylor & Martha |
Late Cretaceous (Cenomanian) |
Beer Head Limestone Formation |
||||
Sp. nov |
Valid |
Martha, Niebuhr & Scholz |
Late Cretaceous (mid-late Turonian) |
Strehlen Formation |
Brachiopods
editResearch
edit- A study on the selectivity of brachiopod extinctions during the Ordovician–Silurian extinction events is published by Finnegan, Rasmussen & Harper (2017).[48]
- A study on the patterns of biomineralization of Late Permian brachiopod shells and on their implications for inferring the environmental disruptions associated with the Permian–Triassic extinction event is published by Garbelli, Angiolini & Shen (2017).[49]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Skovsted et al. |
A member of Acrotretida belonging to the family Acrotretidae. |
|||||
Sp. nov |
Valid |
Pálfy et al. |
||||||
Sp. nov |
Valid |
Liljeroth et al. |
Dunabrattin Limestone Formation |
A member of Strophomenata belonging to the order Billingsellida and the family Clitambonitidae. |
||||
Gen. et sp. nov |
Valid |
Baeza-Carratalá, Reolid & García Joral |
Early Jurassic (late Pliensbachian–early Toarcian) |
Zegrí Formation |
A member of Rhynchonellida belonging to the family Norellidae. The type species is A. falsiorigo. |
|||
Gen. et sp. nov |
Valid |
Baranov |
The type species is A. mica. |
|||||
Sp. nov |
Valid |
Madison |
A member of Strophomenida. |
|||||
Gen. nov |
Valid |
Popov & Zakharov |
A member of Terebratulida. |
|||||
Sp. nov |
Valid |
Bitner & Müller |
A member of Terebratulida belonging to the family Megathyrididae. |
|||||
Sp. nov |
Valid |
Gaspard |
A member of Rhynchonellida belonging to the family Tetrarhynchiidae. |
|||||
Sp. nov |
Valid |
Liljeroth et al. |
Tramore Limestone Formation |
A member of Strophomenida belonging to the family Rafinesquinidae. |
||||
Sp. nov |
Valid |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferinida. |
||||
Sp. nov |
Valid |
Tazawa, Inose & Kaneko |
Late Devonian |
A member of Spiriferida belonging to the family Cyrtospiriferidae. |
||||
Sp. nov |
Valid |
Tazawa |
Late Devonian |
A member of Spiriferida belonging to the family Cyrtospiriferidae. |
||||
Sp. nov |
Valid |
Liljeroth et al. |
Dunabrattin Limestone Formation |
A member of Strophomenida belonging to the family Strophomenidae. |
||||
Sp. nov |
Valid |
Popov & Cocks |
A strophomenoid brachiopod. |
|||||
Sp. nov |
Valid |
Smirnova et al. |
||||||
Sp. nov |
Valid |
Smirnova in Smirnova et al. |
A brachiopod belonging to the family Discinidae, a species of Discinisca. |
|||||
Gen. et sp. nov |
Valid |
Copper & Jin |
An athyride brachiopod. The type species is E. pallula. |
|||||
Sp. nov |
Valid |
Popov & Cocks |
A porambonitoid brachiopod. |
|||||
Sp. nov |
Valid[67] |
Holmer et al. |
A member of Obolidae. |
|||||
Sp. nov |
Valid |
Lü & Ma |
Devonian (late Frasnian) |
A member of Pentamerida. |
||||
Sp. nov |
Valid |
Liljeroth et al. |
Dunabrattin Limestone Formation |
A member of Orthida belonging to the family Hesperorthidae. |
||||
Gen. et comb. nov |
Valid |
Shen in Shen et al. |
Miaoling Formation |
A member of Productida belonging to the family Rugosochonetidae. The type species is "Hemichonetes" hemipleura Li & Su in Li et al. (1980); genus also includes "Hemichonetes guangxingensis Li & Su in Li et al. (1980), "Hemichonetes subquadrata Li & Su in Li et al. (1980) and "Hemichonetes yanjiensis Li & Su in Li et al. (1980). |
||||
Gen. et comb. nov |
Valid |
Liljeroth et al. |
Dunabrattin Limestone Formation |
A member of Pentamerida belonging to the family Porambonitidae. The type species is "Atrypa" filosa M'Coy (1846); genus might also include "Porambonites" dubius Williams & Curry (1985). |
||||
Sp. nov |
Valid |
Liljeroth et al. |
Dunabrattin Limestone Formation |
A member of Orthida belonging to the family Dalmanellidae. |
||||
Sp. nov |
Valid |
Liljeroth et al. |
Dunabrattin Limestone Formation |
A member of Strophomenida belonging to the family Plectambonitidae. |
||||
Sp. nov |
Valid |
Bitner & Müller |
A member of Terebratulida belonging to the family Megathyrididae. |
|||||
Sp. nov |
Valid |
Halamski & Cherif |
Argiles de Saïda Formation |
A member of Terebratulida belonging to the family Muirwoodellidae. |
||||
Gen. et comb. nov |
Valid |
Jin & Holmer |
A new genus for "Pentamerus" gothlandicus Lebedev (1892). |
|||||
Sp. nov |
Valid |
Baeza-Carratalá, Reolid & García Joral |
Early Jurassic (late Pliensbachian–early Toarcian) |
Zegrí Formation |
A member of Athyridida belonging to the family Koninckinidae. |
|||
Nom. nov |
Valid |
Shen in Shen et al. |
Permian (late Cisuralian) |
Chihsia Formation |
A member of Spiriferida belonging to the family Skelidorygmidae; a replacement name for Litothyris Chang (1987). The type species is "Litothyris" anhuiensis Chang (1987). |
|||
Sp. nov |
Valid |
Skovsted et al. |
A member of Linguloidea belonging to the family Kyrshabaktellidae. |
|||||
Sp. nov |
Valid[67] |
Holmer et al. |
Ordovician (early Darriwilian) |
A paterinid brachiopod. |
||||
Sp. nov |
Valid |
Gaspard |
A member of Rhynchonellida belonging to the family Cyclothyrididae. |
|||||
Sp. nov |
Valid |
Mottequin & Simon |
A member of Strophomenoidea belonging to the family Rafinesquinidae. |
|||||
Sp. nov |
Valid |
Lü & Ma |
Devonian (late Frasnian) |
A member of Rhynchonellida. |
||||
Nom. nov |
Valid |
Shen in Shen et al. |
A member of Productida belonging to the family Productellidae. A replacement name for Tarimella Chen (2004). The type species is "Tarimella" tarimensis Chen (2004). |
|||||
Gen. et sp. nov |
Valid |
Wang et al. |
Genus includes new species L. lichuanensis. |
|||||
Sp. nov |
Valid |
Modzalevskaya et al. |
Devonian (Lochkovian) |
|||||
Sp. nov |
Valid |
Mao et al. |
Cambrian |
A brachiopod belonging to the subphylum Rhynchonelliformea, order Kutorginida and the family Nisusiidae. |
||||
Nom. nov |
Valid |
Mottequin & Simon |
A member of Athyridida belonging to the family Nucleospiridae; a replacement name for Athyris globulina de Koninck (1887). |
|||||
Sp. nov |
Valid |
Harper, Parkes & Zhan |
Raheen Formation |
A dalmanelloid brachiopod belonging to the family Dalmanellidae. |
||||
Gen. et sp. nov |
Valid |
Modzalevskaya et al. |
Devonian (Lochkovian) |
A brachiopod. Genus includes new species O. dronovi. |
||||
Gen. et comb. nov |
Valid |
Shen & Grunt in Shen et al. |
Permian (late Cisuralian and Guadalupian) |
Chihsia Formation |
A member of Athyridida belonging to the family Athyrididae. The type species is "Cryptospirifer" omeishanensis Huang (1933); genus also includes "Cryptospirifer" minor Yang (1984) and "Cryptospirifer" shawanensis Jin et al. (1974). |
|||
Sp. nov |
Valid |
Popov & Zakharov |
A member of Rhynchonellida. |
|||||
Sp. nov |
Valid |
Liljeroth et al. |
Tramore Limestone Formation |
A member of Orthida belonging to the family Platystrophiidae. |
||||
Gen. et sp. nov |
Valid |
Skovsted et al. |
A member of Linguloidea belonging to the family Eoobolidae. The type species is P. triangulus. |
|||||
Gen. et sp. nov |
Valid |
Lü & Ma |
Devonian (late Frasnian) |
A member of Terebratulida. The type species is Q. tani. |
||||
Sp. nov |
Valid |
Cisterna et al. |
Carboniferous (late Serpukhovian–Bashkirian) |
A brachiopod belonging to the group Orthida and the family Rhipidomellidae. |
||||
Sp. nov |
Valid |
Radwańska |
A member of Thecideida belonging to the family Thecidellinidae. |
|||||
Sp. nov |
Valid |
Harper, Parkes & Zhan |
Raheen Formation |
A plectambonitoid brachiopod belonging to the family Sowerbyellidae. |
||||
Sp. nov |
Valid |
Mottequin & Simon |
A member of Orthotetida belonging to the family Schuchertellidae. |
|||||
Gen. et sp. nov |
Valid |
Kebria-Ee Zadeh, Popov & Ghobadi Pour |
A member of Orthida belonging to the family Hesperorthidae. Genus includes new species S. fascicostellata. |
|||||
Sp. nov |
Valid |
Mukherjee & Shome |
||||||
Gen. et sp. nov |
Valid |
Baranov |
The type species is S. settedabanica. |
|||||
Sp. nov |
Valid |
García-Alcalde & Herrera |
A member of Rhynchonellida belonging to the superfamily Ancistrorhynchoidea and the family Iberirhynchiidae. |
|||||
Sp. nov |
Valid |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferida. |
||||
Sp. nov |
Valid |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferida. |
||||
Sp. nov |
Valid |
Feldman |
A member of Terebratulida belonging to the family Dielasmatidae. |
|||||
Sp. nov |
Valid |
Mergl et al. |
||||||
Xiangia[59] |
Gen. et sp. nov |
Junior homonym |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferida. The type species is X. liaoi. The generic name is preoccupied by Xiangia Peng (1987). |
|||
Gen. et sp. nov |
Valid |
Popov & Cocks |
An orthoid brachiopod. Genus includes new species Z. gerdkuhensis. |
|||||
Nom. nov |
Valid |
Shen in Shen et al. |
Early Carboniferous |
Zhaojiashan Formation |
A member of Spiriferida belonging to the family Choristitidae; a replacement name for Quizhouspirifer Xian (1982). The type species is "Quizhouspirifer" ziyunensis Xian (1982). |
Molluscs
editEchinoderms
editResearch
edit- Systematic revision of the North American members of the diploporitan family Holocystitidae is published by Sheffield & Sumrall (2017).[84]
- Triassic members of the otherwise Paleozoic groups of sea urchins (the family Proterocidaridae), brittle stars (the family Eospondylidae) and starfish are reported by Thuy, Hagdorn & Gale (2017).[85][86][87][88][89][90][91]
- Phylogenetic analysis and systematic revision of early to middle Paleozoic non-camerate crinoids published by Wright (2017).[92]
- Systematic revision of Ordovician camerate crinoids published by Cole (2017).[93]
- Major revision to the classification of fossil and extant Crinoidea by Wright et al. (2017), including the presentation of new phylogeny-based and rank-based classifications.[94]
- A study on large-scale patterns of morphologic evolution in the Paleozoic radiation of eucladid crinoids is published by Wright (2017).[95]
- A study on the internal morphology of the water vascular system in a specimen of a stem-ophiuroid species Protasterina flexuosa from the Ordovician (Katian) Kope Formation (Kentucky, United States) is published by Clark et al. (2017).[96]
- A study on the paleoecology of the echinoderm species known from the upper Campanian Pierre Shale (including the crinoid Lakotacrinus brezinai), especially on their adaptations to the cold seep environment, is published by Kato, Oji & Shirai (2017).[97][98][99]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Ali |
Middle Miocene |
A sea urchin. |
||||
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
A diplobathrid camerate crinoid. Genus includes new species A. decorus. |
||||
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
|||||
Gen. et sp. nov |
Valid |
Blake |
Gilmore City Formation |
A starfish belonging to the family Urasterellidae. Genus includes new species A. mikrotero. |
||||
Sp. nov |
Valid |
Ali |
Middle Eocene |
A sea urchin. |
||||
Sp. nov |
Valid |
Ewin & Thuy |
Jurassic |
A brittle star. |
||||
Ateleocystites? lansae[106] |
Sp. nov |
Valid |
McDermott & Paul |
Ordovician (Katian) |
Slade and Redhill Beds |
A mitrate belonging to the family Anomalocystitidae, possibly a species of Ateleocystites. |
||
Sp. nov. |
Valid |
Polonkai et al. |
Middle Miocene |
Leitha Limestone Formation |
A heart urchin belonging to the family Brissidae. |
|||
Sp. nov |
Valid |
Blake, Donovan & Harper |
A brittle star belonging to the group Oegophiurida and the family Encrinasteridae. |
|||||
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
A diplobathrid camerate crinoid. Genus includes new species D. hammanni. |
||||
Sp. nov |
Valid |
Silva-Martínez et al. |
Late Cretaceous (early Campanian) |
A heart urchin belonging to the family Brissidae. |
||||
Sp. nov |
Valid |
Ali |
Middle Eocene |
A sea urchin. |
||||
Sp. nov |
Valid |
Ewin & Thuy |
Jurassic |
A brittle star. |
||||
Sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
|||||
Sp. nov |
Valid |
Thompson in Thompson, Petsios & Bottjer |
A sea urchin. The name first appeared in the publication of Thompson et al. (2015);[111] however, it was published in an online only journal Scientific Reports and it was not registered with ZooBank, making it invalid until it was validated by Thompson, Petsios & Bottjer (2017).[110] |
|||||
Gen. et sp. nov |
Valid |
Nardin et al. |
A transitional form between calyx-bearing and theca-bearing blastozoans. Genus includes new species F. luckae. |
|||||
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
A diplobathrid camerate crinoid. Genus includes new species F. nodulus. |
||||
Gen. et sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
An isocrinid crinoid. Genus includes new species F. normannicus. |
||||
Sp. nov |
Valid |
Carrasco |
A sea urchin related to members of the genus Conulus. |
|||||
Sp. nov |
Valid |
Forner i Valls |
A sea urchin belonging to the group Arbacioida and the family Acropeltidae. |
|||||
Gen. et comb. nov |
Valid |
Müller & Hahn |
Early Devonian |
A member of Edrioasteroidea belonging to the family Agelacrinitidae; a new genus for "Agelacrinites" curvatus Grigo (1995). |
||||
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
A diplobathrid camerate crinoid. Genus includes new species G. gutierrezi. |
||||
Gen. et sp. nov |
Valid |
Briggs et al. |
A rhenopyrgid edrioasteroid. The type species is H. disterminus. |
|||||
Sp. nov |
Valid |
Sheffield, Ausich & Sumrall |
A member of Diploporita belonging to the group Sphaeronitida and the family Holocystitidae. |
|||||
Sp. nov |
Valid |
Ali |
Middle Eocene |
A sea urchin. |
||||
Sp. nov |
Valid |
Sadler, Martin & Gallagher |
Miocene |
Colville Sandstone |
A sea urchin. |
|||
Sp. nov |
Valid |
Sadler, Martin & Gallagher |
Miocene |
Colville Sandstone |
A sea urchin. |
|||
Sp. nov |
Valid |
Sadler, Martin & Gallagher |
Miocene |
Colville Sandstone |
A sea urchin. |
|||
Gen. et sp. nov |
Valid |
Reich et al. |
A cyclocystoid echinoderm. Genus includes new species M. smithi. |
|||||
Sp. nov |
Valid |
Donovan & Fearnhead |
Early Devonian |
Looe Basin |
A crinoid belonging to the group Monobathrida and the family Hexacrinitidae. |
|||
Sp. nov |
Valid |
Ewin & Thuy |
Jurassic |
A brittle star. |
||||
Sp. nov |
Valid |
Zachos |
A sea urchin. |
|||||
Gen. et sp. nov |
Valid |
Wright & Toom |
A crinoid. Genus includes new species P. arvosus. |
|||||
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
|||||
Gen. et sp. nov |
Valid |
Rozhnov & Parsley |
A member of Cornuta. Genus includes new species P. jefferiesi. |
|||||
Sp. nov |
Valid |
Forner i Valls |
A sea urchin belonging to the group Cassiduloida and the family Faujasidae. |
|||||
Sp. nov |
Valid |
Mao et al. |
Silurian (Aeronian) |
A crinoid belonging to the family Petalocrinidae. |
||||
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
|||||
Gen. et sp. nov |
Valid |
Cordie & Witzke |
A camerate crinoid belonging to the family Melocrinitidae. Genus includes new species R. rabia. |
|||||
Sp. nov |
Valid |
Zachos |
Clayton Formation |
A sea urchin. |
||||
Gen. et sp. nov |
Valid |
Zamora et al. |
Cambrian (Furongian) |
A stemmed echinoderm. The type species is S. sinensis. |
||||
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
|||||
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
|||||
Gen. et sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
A comatulid crinoid. Genus includes new species S. chesnieri. |
||||
Sp. nov |
Valid |
Mao et al. |
Silurian (Aeronian) |
A crinoid belonging to the family Petalocrinidae. |
||||
Sp. nov |
Valid |
Mao et al. |
Silurian (Aeronian) |
A crinoid belonging to the family Petalocrinidae. |
||||
Gen. et sp. nov |
Valid |
Blake |
Keokuk Formation |
A starfish belonging to the family Urasterellidae. Genus includes new species S. elegans. |
||||
Gen. et sp. nov |
Valid |
Müller & Hahn |
Early Devonian |
Seifen Formation |
A member of Edrioasteroidea. Genus includes new species S. rseiberti. |
|||
Gen. et sp. nov |
Valid |
Villier et al. |
A starfish. Genus includes new species S. promissor. |
|||||
Gen. et sp. nov |
Valid |
Hunter & McNamara |
A brittle star. Genus includes new species T. creasyi. |
|||||
Gen. et sp. nov |
Valid |
Wright & Toom |
A crinoid. Genus includes new species T. estoniensis. |
|||||
Gen. et sp. nov |
Valid |
Néraudeau et al. |
Late Cretaceous (Cenomanian) |
A sea urchin belonging to the family Archiaciidae. Genus includes new species U. sarthacensis. |
||||
Sp. nov |
Valid |
Schlüter & Wiese |
Late Cretaceous (early Campanian) |
A sea urchin belonging to the family Echinolampadidae. |
Conodonts
editResearch
edit- A study on the conodont assemblage from the Silurian (Homerian) Rootsiküla Formation (Estonia), interpreted as occurring in the evaporite-bearing strata, and on the conodont diversity in various environments, is published by Jarochowska et al. (2017).[132]
- Articulated skeletal remains of Hindeodus parvus, providing direct evidence of the number and arrangement of elements in the apparatus, are described from the Lower Triassic of China by Zhang et al. (2017).[133][134][135]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Voldman & Albanesi in Voldman et al. |
Early Ordovician |
|||||
Gen. et sp. nov |
Valid |
Miller et al. |
A member of Balognathidae. Genus includes new species A. manniki. |
|||||
Subsp. nov |
Valid |
Söte, Hartenfels & Becker |
||||||
Sp. nov |
Valid |
Dong & Zhang |
A euconodont. |
|||||
Sp. nov |
Valid |
Ovnatanova et al. |
Late Devonian |
Kedzyrschor Formation |
||||
Sp. nov |
Valid |
Feltes & Albanesi in Serra et al. |
Ordovician (Darriwilian) |
Gualcamayo Formation |
||||
Sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. |
|||||
Sp. nov |
Valid |
Voldman & Albanesi in Voldman et al. |
Early Ordovician |
|||||
Gen. et comb. nov |
Valid |
Plasencia et al. |
Mukheiris Formation |
A member of the family Gondolellidae. The type species is "Neospathodus" shagami Benjamini & Chepstow-Lusty (1986); genus also includes "Pseudofurnishius" siyalaensis Sadeddin & Kozur (1992). |
||||
Sp. nov |
Valid |
Sun et al. |
Permian |
|||||
Sp. nov |
Valid |
Lüddecke, Hartenfels & Becker |
||||||
Sp. nov |
Valid |
Suttner, Kido & Suttner |
Middle Devonian |
|||||
Sp. nov |
Valid |
Hogancamp & Barrick |
Heebner Shale |
|||||
Sp. nov |
Valid |
Cardoso, Sanz-López & Blanco-Ferrera |
Carboniferous (Pennsylvanian) |
Tapajós Group |
||||
Sp. nov |
Valid |
Hu & Qi in Hu et al. |
||||||
Gen. et sp. nov |
Valid |
Liu et al. |
Ordovician (Whiterock Stage) |
Winneshiek Konservat-Lagerstätte |
Genus includes new species I. grandis. |
|||
Gen. et comb. nov |
Valid |
Plasencia et al. |
Austria |
A member of the family Gondolellidae. The type species is "Polygnathus" mungoensis Diebel (1956); genus also includes "Tardogondolella" diebeli Kozur & Mostler (1971), "Epigondolella" mostleri Kozur in Kozur & Mock (1972) and "Metapolygnathus" longobardicus Kovács (1983). |
||||
Sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. |
|||||
Sp. nov |
Valid |
Dong & Zhang |
Cambrian (Guzhangian and Paibian) |
A member of Paraconodontida. |
||||
Gen. et sp. nov |
Valid |
Izokh in Izokh & Yazikov |
Early Carboniferous |
Genus includes new species L. bakharevi. |
||||
Gen. et sp. nov |
Valid |
Dong & Zhang |
Cambrian Stage 10 and Early Ordovician (Tremadocian) |
A member of Paraconodontida. Genus includes new species L. hunanensis. |
||||
Gen. et comb. nov |
Valid |
Plasencia et al. |
Austria |
A member of the family Gondolellidae. The type species is "Gladigondolella" truempyi Hirsch (1971); genus also includes "Polygnathus" japonicus Hayashi (1968). |
||||
Gen. et sp. nov |
Valid |
Zhang, Jowett & Barnes |
Cape Phillips Formation |
A conodont of uncertain phylogenetic placement. The type species is M. melchini. |
||||
Gen. et sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. Genus includes new species M. multicostatus. |
|||||
Gen. et sp. nov |
Valid |
Dong & Zhang |
A euconodont. Genus includes new species M. intermedius. |
|||||
Sp. nov |
Valid |
Chen & Lukeneder |
||||||
Subsp. nov |
Valid |
Izokh in Izokh & Yazikov |
Early Carboniferous |
|||||
Sp. nov |
Valid |
Plotitsyn & Zhuravlev |
||||||
Sp. nov |
In press |
Rigo et al. |
A member of Ozarkodinida. |
|||||
Gen. et sp. nov |
Valid |
Miller et al. |
A member of Balognathidae. Genus includes new species O. daiqaensis. |
|||||
Sp. nov |
Valid |
Soboleva |
||||||
Nom. nov |
Valid |
Klapper et al. |
A replacement name for Palmatolepis nodosa Klapper et al. (2004). |
|||||
Sp. nov |
Valid |
Soboleva |
||||||
Sp. nov |
Valid |
Plotitsyn & Zhuravlev |
||||||
Sp. nov |
Junior homonym |
Ovnatanova et al. |
Sortomael' Formation |
Ovnatanova et al. (2019) coined a replacement name Polygnathus sharyuensis.[157] |
||||
Sp. nov |
Valid |
Plotitsyn & Zhuravlev |
||||||
Sp. nov |
Valid |
Dong & Zhang |
Cambrian (Guzhangian and Paibian) |
A member of Paraconodontida. |
||||
Sp. nov |
Valid |
Sun et al. |
Permian |
|||||
Sp. nov |
Valid |
Zhang et al. |
Triassic |
|||||
Sp. nov |
Valid |
Zhang et al. |
Triassic |
|||||
Sp. nov |
Valid |
Zhuravlev |
Idzhid Formation |
|||||
Sp. nov |
Valid |
Kaiser, Kumpan & Cígler |
Líšeň Formation |
A member of Ozarkodinida belonging to the family Elictognathidae. |
||||
Sp. nov |
Valid |
Sun et al. |
Permian |
|||||
Gen. et sp. nov |
Valid |
Dong & Zhang |
A euconodont. Genus includes new species T. gracilis. |
|||||
Sp. nov |
Valid |
Wang et al. |
||||||
Gen. et sp. nov |
Valid |
Dong & Zhang |
A euconodont. Genus includes new species W. conicus. |
|||||
Gen. et sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. Genus includes new species W. elegans. |
|||||
Sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. |
|||||
Sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. |
|||||
Sp. nov |
Valid |
Dong & Zhang |
A member of Paraconodontida. |
|||||
Gen. et comb. nov |
Valid |
Voldman & Albanesi in Voldman et al. |
Early Ordovician |
A new genus for "Trapezognathus" primitivus Voldman, Albanesi & Zeballo in Voldman et al. (2013); genus also includes "Trapezognathus" argentinensis Rao et al. (1994) |
Fishes
editAmphibians
editResearch
edit- A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).[163]
- A study on the evolution of forelimb musculature from the lobe-finned fish to early tetrapods is published online by Molnar et al. (2017).[164]
- A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).[165]
- A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).[166]
- A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).[167]
- A study on the earliest larval development in temnospondyls, as indicated by specimens from the Permian (Sakmarian) lake sediments near Obermoschel (Saar–Nahe Basin, Germany), is published by Werneburg (2017).[168]
- A study on the histology of the small palatal plates and their denticles in a Permian dissorophoid temnospondyl from the Dolese Brothers Limestone Quarry near Richards Spur (Oklahoma, United States) is published by Gee, Haridy & Reisz (2017).[169]
- Taxonomic revision of all described rhinesuchids and a study on the phylogenetic relationships of members of Rhinesuchidae is published by Marsicano et al. (2017), who transfer the species "Rhinesuchus" capensis Haughton (1925) to the genus Rhinesuchoides.[170]
- New specimen of the rhinesuchid Australerpeton cosgriffi (a skull and mandible) is described from the Permian Rio do Rasto Formation (Brazil) by Azevedo, Vega & Soares (2017).[171]
- A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).[172]
- A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).[173]
- An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.[174]
- A juvenile specimen of Koskinonodon perfectus is described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).[175]
- A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).[176]
- A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).[177]
- Fossilized soft tissues preserved with the type specimen of the salamander Phosphotriton sigei are described by Tissier, Rage & Laurin (2017).[178]
- A study on the bite force in extant Cranwell's horned frog (Ceratophrys cranwelli) and its implications for estimating the bite force in the Late Cretaceous species Beelzebufo ampinga is published by Lappin et al. (2017).[179]
- Frog fossils, including the first known fossils of shovelnose frogs, are described from the early Pliocene of Kanapoi (Kenya) by Delfino (2017).[180]
- A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).[181]
New taxa
editTemnospondyls
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Fortuny et al. |
||||||
Gen. et sp. nov |
Valid |
Pardo, Small & Huttenlocker |
A member of Stereospondyli, possibly a stem-caecilian. The type species is C. jenkinsi. |
|||||
Sp. nov |
Valid |
Marzola et al. |
||||||
Gen. et sp. nov |
Valid |
Eltink, Stock Da-Rosa, & Dias-da-Silva |
A capitosaur. |
Lissamphibians
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Nicoli |
Oligocene |
A member of Odontophrynidae. The type species is C. lynchi. |
||||
Gen. et sp. nov |
Valid |
Gao & Chen |
Early Cretaceous |
Guanghua (upper part of Longjiang) Formation |
A crown-group frog. The type species is G. baoshanensis. |
|||
Gen. et sp. nov |
Valid |
Wang, Roček & Dong |
Early Eocene |
A pelobatoid frog of uncertain phylogenetic placement. Genus includes new species S. sinensis. |
Other amphibians
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Smithson et al. |
A member of the superfamily Baphetoidea. |
|||||
Gen. et sp. nov |
Valid |
Jiang, Ji & Mo |
Middle Permian |
A bystrowianid chroniosuchian. The type species is Y. yangi. |
Reptiles
editSynapsids
editNon-mammalian synapsids
editResearch
edit- Phreatophasma aenigmaticum is argued to be a member of Caseidae by Brocklehurst & Fröbisch (2017).[191]
- New fossil material of the caseid Alierasaurus ronchii is described from the Permian deposits of Cala del Vino Formation (Sardinia, Italy) by Romano et al. (2017).[192]
- A study on the histology of the humeri of Ophiacodon, revealing the existence of fibrolamellar bone in the postcranial bones of this taxon, is published by Shelton & Sander (2017).[193]
- A study on the body size evolution of edaphosaurids and sphenacodontids is published by Brocklehurst & Brink (2017).[194]
- A study on the evolution of the endothermy in non-mammalian therapsids as indicated by oxygen isotope composition of bone and tooth phosphate in Permian and Triassic therapsids is published by Rey et al. (2017).[195]
- A study on the brain morphology of non-mammaliaform therapsids based on skull endocasts of Moschops capensis and a number of biarmosuchians (including Herpetoskylax hopsoni and members of the genera Hipposaurus and Lemurosaurus) is published by Benoit et al. (2017).[196]
- A study on the morphology of the bony labyrinth of five biarmosuchian specimens is published by Benoit et al. (2017).[197]
- A study on the anatomy of the skull of Moschops capensis, revealing adaptations of the central nervous system related to head-to-head fighting, is published by Benoit et al. (2017).[198]
- A study on the resting metabolic rate in Moghreberia nmachouensis is published by Olivier et al. (2017).[199]
- A study on the contents of the depression known as the "unossified zone" in the brain cavity of Diictodon feliceps is published by Laaß, Schillinger & Kaestner (2017).[200]
- A reassessment of the skull morphology and phylogenetic position of Compsodon helmoedi is published by Angielczyk & Kammerer (2017).[201]
- A skeleton of Lystrosaurus curvatus in a fossilized burrow, preserved with taphonomic evidence indicating that this individual was the burrow maker, is described from the Lower Triassic of the South African Karoo Basin by Botha-Brink (2017).[202]
- A structure analogous to the mammalian neocortex is reported in Kawingasaurus fossilis by Laaß & Kaestner (2017).[203]
- A gorgonopsian dentary affected by a condition closely resembling compound odontoma is reported from the Upper Permian of Tanzania by Whitney, Mose & Sidor (2017).[204]
- A detailed description of the braincase of two gorgonopsian specimens (a probable specimen of Aelurosaurus wilmanae from South Africa and a possible specimen of Arctognathus? nasuta from Tanzania) is published by Araújo et al. (2017).[205]
- A redescription and revision of the gorgonopsian genus Arctops is published by Kammerer (2017).[206]
- Rediscovered holotype of the gorgonopsian species Clelandina major is described by Kammerer (2017), who considers this species to be a junior synonym of Clelandina rubidgei.[207]
- A study on the anatomy of the teeth and maxilla of Euchambersia mirabilis and its implications for the hypothesis that venom gland were present in this species is published by Benoit et al. (2017).[208]
- A redescription and a study on the phylogenetic relationships of Silphoictidoides ruhuhuensis is published by Maisch (2017), who considers the species to be a basal member of Baurioidea.[209]
- A study on the internal morphology of the interorbital region of the skull of basal cynodonts, including rarely fossilized orbitosphenoid elements, is published by Benoit et al. (2017).[210]
- A study on the anatomy of the nasal regions of the non-mammalian cynodonts Massetognathus, Probainognathus and Elliotherium, comparing it to the nasal regions of fossil mammaliaforms and extant mammals, is published by Crompton et al. (2017).[211]
- A survey of the aggregations of the specimens of Galesaurus planiceps and Thrinaxodon liorhinus, with emphasis on whether the aggregations consist of individuals of similar age or representing a mixture of different age classes, is published by Jasinoski & Abdala (2017).[212]
- A study on the ontogenetic changes in the skull and mandible of Galesaurus planiceps is published by Jasinoski & Abdala (2017).[213]
- A description of the postcranial skeleton of Boreogomphodon from the Triassic Pekin Formation (North Carolina, United States) and a review of the postcranial variation across members of the family Traversodontidae is published by Liu, Schneider & Olsen (2017).[214]
- A study on the jaw movement of Exaeretodon argentinus as indicated by its dental microwear is published by Kubo, Yamada & Kubo (2017).[215]
- A study on the morphology of the teeth of the cynodont Candelariodon barberenai, as well as on the phylogenetic relationships of the species, is published by Martinelli et al. (2017).[216]
- A description of the anatomy of the postcranial skeleton of Tritylodon longaevus is published by Gaetano, Abdala & Govender (2017).[217]
- A reassessment of the anatomy of the postcanine teeth of Stereognathus, based upon all available material from the United Kingdom, is published by Panciroli et al. (2017), who consider the species S. hebridicus to be a junior synonym of the species S. ooliticus.[218]
- Cast of a burrow which was probably made by a tritheledontid cynodont is described from the Early Jurassic upper Elliot Formation (South Africa) by Bordy et al. (2017).[219]
- A study on the evolution of jaw muscles across the cynodont–mammaliaform transition is published by Lautenschlager et al. (2017).[220]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Martinelli et al. |
Late Triassic (late Carnian) |
A cynodont belonging to the group Prozostrodontia. The type species is A. huebneri. |
||||
Sp. nov |
Valid |
Martinelli et al. |
A cynodont belonging to the family Chiniquodontidae. |
|||||
Gen. et sp. nov |
Valid |
Kammerer & Smith |
Late Permian |
A dicynodont belonging to the family Geikiidae. The type species is B. phylloxyron. |
||||
Gen. et sp. nov |
Valid |
Liu & Abdala |
Late Permian |
A therocephalian. The type species is D. fuae. |
||||
Gen. et sp. nov |
Valid |
Huttenlocker & Smith |
A whaitsiid therocephalian. The type species is M. mendrezi. |
|||||
Gen. et sp. nov |
Valid |
Velazco, Buczek & Novacek |
Ulan Malgait Sequence |
A tritylodontid cynodont. The type species is N. baruunensis. |
||||
Gen. et sp. nov |
Valid |
Huttenlocker & Smith |
A whaitsioid therocephalian of uncertain phylogenetic placement. The type species is O. tatarinovi. |
|||||
Gen. et sp. nov |
Valid |
Kurkin |
Permian (Severodvinian) |
An anomodont related to Suminia. Genus includes new species P. ivakhnenkoi. |
||||
Sp. nov |
Valid |
Melo, Martinelli & Soares |
Santa Maria Supersequence |
|||||
Gen. et sp. nov |
Valid |
Velazco, Buczek & Novacek |
Ulan Malgait Sequence |
A tritylodontid cynodont. The type species is S. altai. |
||||
Gen. et sp. nov |
Valid |
Liu & Abdala |
Late Permian |
An akidnognathid therocephalian. The type species is S. wangi. |
Mammals
editOther animals
editResearch
edit- A study on a succession of Ediacaran to Cambrian fossil assemblages from the eastern Siberian Platform (Russia) is published by Zhu et al. (2017), who argue that so-called Ediacaran and earliest Cambrian skeletal biotas overlap without notable biotic turnover.[230]
- A study on the Ediacaran taxon Parvancorina minchami, indicating that this animal was capable of performing rheotaxis, is published by Paterson et al. (2017).[231]
- A study on the water flow around the body of the Ediacaran taxon Parvancorina and its implications for the feeding mode and mobility of this animal is published by Darroch et al. (2017).[232]
- Fossils of members of the genus Namacalathus (co-occurring with Cloudina and Corumbella) are reported from the Ediacaran Tagatiya Guazú Formation (Itapucumi Group, Paraguay) by Warren et al. (2017), extending known geographic range of the taxon.[233]
- A study on the morphology, growth and development of Dickinsonia costata is published by Evans, Droser & Gehling (2017).[234]
- A study on the growth and development of Dickinsonia is published by Hoekzema et al. (2017), who interpret this taxon as an animal.[235]
- A study on the anatomy of Dickinsonia costata and D. tenuis is published by Zakrevskaya & Ivantsov (2017), who interpret D. costata as probably descended from D. tenuis by neoteny.[236]
- Description of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian Carrara Formation (California, United States), tentatively assigned to the genus Discophyllum (an animal of uncertain phylogenetic placement, might be a chondrophore or an eldoniid) is published by Lieberman et al. (2017).[237]
- Specimens of Cloudina associated with microbial mat textures are reported from the Ediacaran Tamengo Formation (Brazil) by Becker-Kerber et al. (2017).[238]
- An assemblage of trace fossils from Ediacaran–Cambrian siltstones in Brazil, probably produced by a nematoid-like organism, is described by Parry et al. (2017).[239]
- A diverse fauna dominated by sponges living immediately after the Hirnantian extinction is described from China by Botting et al. (2017).[240]
- A diverse Early Triassic (Olenekian) marine assemblage (Paris biota), including leptomitid protomonaxonid sponges (a group otherwise known only from Cambrian and Ordovician), new forms of the crinoid order Holocrinida displaying advanced characters, a probable basal ophiodermatid and gladius-bearing coleoids (previously unknown in Early Triassic strata) is reported from Paris (Idaho, United States) by Brayard et al. (2017).[241]
- A study on the muscle anatomy of Pambdelurion whittingtoni is published by Young & Vinther (2017).[242]
- Cambrian species Zhenghecaris shankouensis, originally classified as a bivalved arthropod, is reinterpreted as a member of Radiodonta by Zeng et al. (2017).[243]
- The holotype specimen of a putative lobopodian species Aysheaia prolata is reinterpreted as an isolated frontal appendage of a radiodontan belonging to the genus Stanleycaris by Pates, Daley & Ortega-Hernández (2017).[244]
- A revision of the radiodontan genus Caryosyntrips is published by Pates & Daley (2017), who interpret the holotype specimen of a putative lobopodian species Mureropodia apae as a partial isolated appendage of a member of the genus Caryosyntrips.[245]
- Description of the morphology of Amplectobelua symbrachiata, with a focus on its head region, is published by Cong et al. (2017).[246]
- A study on the anatomy of the Cambrian hyolith Haplophrentis, as well as on the phylogenetic relationships of the hyoliths, is published by Moysiuk, Smith & Caron (2017).[247]
- A study on the phylogenetic relationships of Tullimonstrum gregarium, challenging its interpretation as a vertebrate, is published by Sallan et al. (2017).[248]
- New exceptionally preserved fossils of Vetulicola longbaoshanensis are described from the Lower Cambrian Wulongqing Formation (China) by Li, Liu & Ou (2017).[249]
- Putative trematode metacercariae preserved at the base of the femora of an agamid lizard are described from the Cretaceous Burmese amber (Myanmar) by Poinar et al. (2017).[250]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Wu |
Permian (Changhsingian) |
A calcareous sponge belonging to the order Inozoa and the family Acoeliidae. |
||||
Gen. et sp. nov |
Valid |
Melchin, Lenz & Kozłowska |
Silurian |
A graptolite. Genus includes new species A. cancellatus. |
||||
Nom. et sp. nov |
Valid |
Geyer |
Jbel Wawrmast Formation |
A member of Hyolitha; a replacement name for Oxyprymna Kiderlen (1933). Genus includes A. schloppensis (Wurm, 1925) and a new species A. ougnatensis. |
||||
Sp. nov |
Valid |
Yun, Zhang & Li |
Chengjiang Lagerstätte |
|||||
Gen. et sp. nov |
Valid |
Hints et al. |
A polychaete described on the basis of scolecodonts. Genus includes new species A. paxtonae. |
|||||
Gen. et sp. nov |
Valid |
Yang et al. |
A sponge belonging to the order Verongida and the family Vauxiidae. Genus includes new species A. sinensis. |
|||||
Gen. et sp. nov |
Valid |
Shu et al. |
Qiongzhusi (Chiungchussu) Formation |
An arrow worm. The type species is A. sericus. |
||||
Gen. et sp. nov |
Valid |
Kočí et al. |
Bohemian Cretaceous Basin |
An animal of uncertain phylogenetic placement. Originally interpreted as a barnacle belonging to the group Balanomorpha and the superfamily Chionelasmatoidea; Gale & Skelton (2018) considered it to be a rudist bivalve instead.[260] Genus includes new species A. nekvasilovae. |
||||
Gen. et sp. nov |
Valid |
Valent, Fatka & Marek |
A member of Hyolitha. Genus includes new species B. iactans. |
|||||
Gen. et sp. nov |
Valid |
Briggs & Caron |
An arrow worm. The type species is C. praetermissus. |
|||||
Sp. nov |
Valid |
Pates & Daley |
A member of Radiodonta. |
|||||
Sp. nov |
Valid |
Pates & Daley |
A member of Radiodonta. |
|||||
Sp. nov |
Valid |
Cai et al. |
Late Ediacaran |
|||||
Sp. nov |
Valid |
Cai et al. |
Late Ediacaran |
|||||
Sp. nov |
Valid |
Vinn & Madison |
A member of Cornulitida belonging to the family Cornulitidae. |
|||||
Gen. et sp. nov |
Botting, Zhang & Muir |
Late Ordovician |
A stem-demosponge of uncertain phylogenetic placement. The type species is C. anjiensis. |
|||||
Sp. nov |
Valid |
Świerczewska-Gładysz |
Late Cretaceous (early Campanian) |
A lithistid demosponge belonging to the family Corallistidae. |
||||
Sp. nov |
Valid |
A nematode belonging to the family Mermithidae. |
||||||
Gen. et sp. nov |
Valid |
Harvey & Butterfield |
Cambrian (Furongian) |
A member of the total group of Loricifera. The type species is E. deadwoodensis. |
||||
Sp. nov |
Valid |
Melchin, Lenz & Kozłowska |
Silurian |
A graptolite. |
||||
Gen. et sp. nov |
Valid |
Han et al. |
Earliest Cambrian |
A Cloudina-like tubular microfossil. The type species is F. manica. |
||||
Sp. nov |
Valid |
Ungureanu, Ahmad & Farouk |
A sponge. |
|||||
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
"Pietra di Salomone" Limestone |
A polychaete belonging to the family Sabellidae, a species of Glomerula. |
|||
Sp. nov |
Valid |
Vodrážka |
Bílá Hora Formation |
A hexactinellid sponge belonging to the family Cribrospongiidae. |
||||
Gen. et sp. nov |
Valid |
Cong et al. |
Early Cambrian |
A tiny worm infecting members of the genera Cricocosmia and Mafangscolex. Genus includes new species I. fellatus. |
||||
Gen. et sp. nov |
Valid |
Ivantsov |
Late Precambrian |
Zimnie Gory Formation |
An early eumetazoan, showing similarities to the arthropod species Naraoia longicaudata. The type species is K. brutoni. |
|||
Sp. nov |
Valid |
Jeon et al. |
||||||
Sp. nov |
Valid |
Gügel et al. |
A machaeridian. |
|||||
Sp. nov |
Valid |
Sun et al. |
Cambrian Stage 4 |
A member of Hyolitha. |
||||
Sp. nov |
Valid |
Wotte & Sundberg |
A lobopodian. |
|||||
Sp. nov |
Valid |
Wotte & Sundberg |
A lobopodian. |
|||||
Gen. et sp. nov |
Valid |
Ungureanu, Ahmad & Farouk |
A sponge. Genus includes new species M. hanium. |
|||||
Gen. et sp. nov |
Valid |
Cai et al. |
Late Ediacaran |
A Cloudina-like fossil. Genus includes new species M. chinensis. |
||||
Sp. nov |
Valid |
Świerczewska-Gładysz |
Late Cretaceous (early Campanian) |
A lithistid demosponge belonging to the family Corallistidae. |
||||
Sp. nov |
Zhao & Smith in Zhao et al. |
|||||||
Gen. et sp. nov |
Valid |
Caron & Aria |
A lobopodian belonging to the family Luolishaniidae. The type species is O. cribratus. |
|||||
Sp. nov |
Valid |
Świerczewska-Gładysz |
Late Cretaceous (early Campanian) |
A lithistid demosponge belonging to the family Corallistidae. |
||||
Sp. nov |
Valid |
VandenBerg |
Ordovician (early Floian) |
A graptolite belonging to the group Dichograptina and the family Phyllograptidae. |
||||
Sp. nov |
Valid |
VandenBerg |
Ordovician (early Floian) |
A graptolite belonging to the group Dichograptina and the family Phyllograptidae. |
||||
Sp. nov |
Valid |
VandenBerg |
Ordovician (early Floian) |
A graptolite belonging to the group Dichograptina and the family Phyllograptidae. |
||||
Sp. nov |
Valid |
Candela & Crighton |
Silurian (Telychian) |
A machaeridian. |
||||
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
"Pietra di Salomone" Limestone |
A polychaete belonging to the family Serpulidae, a species of Propomatoceros. |
|||
Sp. nov |
Valid |
Melchin, Lenz & Kozłowska |
Silurian |
A graptolite. |
||||
Sp. nov |
Valid |
Kočí, Jäger & Morel |
Late Cretaceous (Cenomanian) |
A polychaete belonging to the family Serpulidae. |
||||
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
"Pietra di Salomone" Limestone |
A polychaete belonging to the family Serpulidae, a species of Pyrgopolon. |
|||
Gen. et sp. nov |
Valid |
Wu |
Permian (Changhsingian) |
A sclerosponge. The type species is R. laibinensis. |
||||
Sp. nov |
Valid |
Beresi et al. |
A reticulosan sponge of uncertain phylogenetic placement. |
|||||
Gen. et sp. nov |
Valid |
Han et al. |
Earliest Cambrian |
An animal of uncertain phylogenetic placement. Originally described as an early deuterostome related to vetulicolians and vetulocystids, but subsequently argued to be an ecdysozoan.[286] The type species is S. coronarius. |
||||
"Serpula" distefanoi[271] |
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
"Pietra di Salomone" Limestone |
A polychaete belonging to the family Serpulidae. |
||
Serpula? pseudoserpentina[283] |
Sp. nov |
Valid |
Kočí, Jäger & Morel |
Late Cretaceous (Cenomanian) |
A polychaete belonging to the family Serpulidae. |
|||
Sp. nov |
Valid |
Peel |
A sponge. |
|||||
Gen. et sp. nov |
Valid |
Peel |
Sirius Passet Lagerstätte |
A member of Priapulida. Genus includes new species S. simoni. |
||||
Sp. nov |
Valid |
Kimmig, Strotz & Lieberman |
||||||
Gen. et 2 sp. nov |
Valid[290] |
Zeng et al. |
Early Cambrian |
Chengjiang Lagerstätte |
Originally considered as member of Radiodonta, possibly a member of Hurdiidae, but denied in 2018.[291][292] Genus includes new species T. latizonae and T. oxygonae. |
|||
Sp. nov |
Valid |
Peel |
A sponge. |
|||||
Sp. nov |
Valid |
Kouchinsky et al. |
A member of Tianzhushanellidae (a group of animals of uncertain phylogenetic placement, possibly stem-brachiopods). |
|||||
Gen. et comb. et 3 sp. nov |
Valid |
VandenBerg |
Ordovician (early Floian) |
A graptolite belonging to the group Dichograptina and the family Phyllograptidae. The type species is "Graptolithus" fruticosus Hall (1858); genus also includes new species T. tridens, T. cymulus and T. furcillatus. |
||||
Sp. nov |
Valid |
Beresi et al. |
A reticulosan sponge of uncertain phylogenetic placement. |
|||||
Gen. et sp. nov |
Zhang et al. |
A worm-like organism, possibly a member of Bilateria of uncertain phylogenetic placement. The type species is V. annularius. |
||||||
Gen. et sp. nov |
Valid |
Eriksson, Parry & Rudkin |
A eunicidan polychaete of uncertain phylogenetic placement. The type species is W. armstrongi. |
Other organisms
editResearch
edit- Eoarchean (over 3,700 million years old) organic residues are reported from Isua, West Greenland by Hassenkam et al. (2017).[296]
- Putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old are described from the Nuvvuagittuq belt (Quebec, Canada) by Dodd et al. (2017).[297]
- Organic carbon contents are reported from the oldest metasedimentary rocks from northern Labrador (Canada) by Tashiro et al. (2017), who interpret the finding as the oldest evidence of organisms greater than 3.95 Ga;[298] the study is subsequently criticized by Whitehouse et al. (2019).[299]
- Potential biosignatures, including stromatolites, are reported from the newly discovered rocks recovered from ca. 3.48 billion years old Dresser Formation (Pilbara Craton, Australia) by Djokic et al. (2017).[300]
- Lenticular structures known from the ~3.4 Ga Kromberg Formation (Kaapvaal Craton, South Africa) are interpreted as organic Archean microfossils by Oehler et al. (2017).[301]
- Fossils of early eukaryotes Tappania plana, Dictyosphaera macroreticulata and Valeria lophostriata are described from the early Mesoproterozoic Greyson Formation (Belt Supergroup, Montana, United States) by Adam et al. (2017).[302]
- 2.4-billion-year-old filamentous fossils forming mycelium-like structures, considered to be either the oldest known fungi or members of an unknown branch of fungus-like mycelial organisms, are described from the Ongeluk Formation (South Africa) by Bengtson et al. (2017).[303]
- A study on the anatomy of the fossils of Chuaria circularis recovered from the Tonian Liulaobei Formation (China) is published by Tang et al. (2017), who interpret Chuaria as most likely a simple multicellular organism (a colonial organism without cell differentiation).[304]
- A study on the apatitic scale microfossils from the Fifteenmile Group (Yukon, Canada), indicating that the fossils document the existence of eukaryotic biomineralizing organisms approximately 810 million years ago, is published by Cohen et al. (2017).[305]
- A study on the structure, morphology, and development of the large intracellular structures preserved in embryo-like microfossils from the Ediacaran Weng'an Biota (China) is published by Yin et al. (2017), who interpret these structures as likely cell nuclei.[306]
- A study testing the suggested link between the appearance of large body size in rangeomorphs (organisms of uncertain phylogenetic placement, likely animals) in the Ediacaran and postulated regional increases in environmental nutrient levels is published by Hoyal Cuthill & Conway Morris (2017).[307]
- A study on the internal morphology of Rangea from the Nama Group (Namibia), based on data obtained using X-ray micro-computed tomography, is published by Sharp et al. (2017).[308]
- Smith et al. (2017) report the discovery of fossils of Gaojiashania from the Ediacaran strata of the Nama Group (Namibia) and a new fossil assemblage from the Ediacaran strata of the Wood Canyon Formation (Nevada, United States), including erniettomorphs and a variety of tubular body fossils.[309]
- A study on the well-preserved Devonian calcareous nanicellid foraminiferans from the Świętokrzyskie Mountains (Poland) and their implications for the biomineralization style and affinities of Paleozoic fusulinid foraminiferans is published by Dubicka & Gorzelak (2017).[310]
- Four forms of modern-looking gilled mushrooms, including two taxa belonging to the family Marasmiaceae, are described from the Cretaceous Burmese amber by Cai et al. (2017).[311]
New taxa
editName | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et 2 sp. nov |
Valid |
Howe |
Bulgaria |
A nannofossil. Genus includes new species A. dennei and A. valentinei. |
||||
Gen. et sp. nov |
Valid |
Worobiec et al. |
Miocene |
A fungus, probably a member of Chaetomiaceae. Genus includes new species A. miocenica. |
||||
Sp. nov |
Valid |
Naugolnykh |
Permian (Kungurian) |
A brown alga. |
||||
Sp. nov |
Valid |
Naugolnykh |
Permian (Kungurian) |
A brown alga. |
||||
Sp. nov |
Valid |
Kobayashi |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
||||
Sp. nov |
Valid |
Carrera, Astini & Gomez |
Early Ordovician |
La Silla Formation |
A coral-like organism of uncertain phylogenetic placement. |
|||
Sp. nov |
Valid |
Vishnu et al. |
Mid-Miocene to early Pleistocene |
|||||
Sp. nov |
Valid |
Vishnu et al. |
Mid-Miocene to early Pleistocene |
|||||
Sp. nov |
Valid |
Vishnu et al. |
Mid-Miocene to early Pleistocene |
|||||
Sp. nov |
Valid |
Vishnu et al. |
Mid-Miocene to early Pleistocene |
|||||
Sp. nov |
Valid |
Vishnu et al. |
Mid-Miocene to early Pleistocene |
|||||
Sp. nov |
Valid |
Vishnu et al. |
Mid-Miocene to early Pleistocene |
|||||
Gen. et sp. nov |
Valid |
Matsumaru |
A foraminifer. Genus includes new species B. eocenica. |
|||||
Gen. et sp. nov |
Valid |
Javaux & Knoll |
A possible eukaryotic microorganism of uncertain phylogenetic placement. The type species is B. kokkoda. |
|||||
Sp. nov |
Valid |
Cohen, Irvine & Strauss |
Callison Lake Formation |
A vase-shaped microfossil. |
||||
Sp. nov |
Valid |
Alves, Lima & Shimabukuro |
Early Cretaceous (Aptian) |
A haptophyte belonging to the family Braarudosphaeraceae. |
||||
Sp. nov |
Valid |
Kobayashi |
Carboniferous (Kasimovian and Gzhelian) |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
|||
Gen. et sp. nov |
Valid |
Worobiec et al. |
Neogene |
A fungus, probably a member of Cephalothecaceae. Genus includes new species C. neogenicus. |
||||
Sp. nov |
Valid |
Musatov |
A haptophyte. |
|||||
Gen. et sp. nov |
Valid |
Du et al. |
A red alga. The type species is Cobios rubo. |
|||||
Gen. et sp. nov |
Valid |
Shen et al. |
A benthic modular organism consisting of serially arranged and crescent-shaped chambers. Genus includes new species C. ediacaranus. |
|||||
Sp. nov |
Valid |
Shi & Feng in Shi et al. |
Early Mesoproterozoic |
A member of Cyanobacteria belonging to the group Nostocales. |
||||
Sp. nov |
Valid |
Cohen, Irvine & Strauss |
Callison Lake Formation |
A vase-shaped microfossil. Originally described as a species of Cycliocyrillium, but subsequently transferred to the genus Obelix.[326] Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.[326] |
||||
Gen. et sp. et comb. nov |
Valid |
Xiao & Suzuki in Xiao, Suzuki & He |
Late Permian |
Upper Dalong Formation |
A radiolarian belonging to the group Spumellaria and the family Spongotortilispinidae. The type species is D. bipolaris; genus also includes "Pseudospongoprunum" fontainei Sashida in Sashida et al. (2000). |
|||
Gen. et sp. nov |
Valid |
Bengtson in Bengtson et al. |
~1.6 billion years ago |
An organism of uncertain phylogenetic placement, might be an alga or prokaryote. Genus includes new species D. mendax. |
||||
Gen. et sp. nov |
Valid |
Tang et al. |
Late Mesoproterozoic – early Neoproterozoic |
Madhubani Group |
An organic-walled microfossil. Genus includes new species D. corallis. |
|||
Gen. et sp. nov |
Valid |
Wang, Wang & Du |
A macroalga of uncertain phylogenetic placement. Genus includes new species D. whenghuiensis. |
|||||
Gen. et sp. nov |
Valid |
Cruz-Abad et al. |
A foraminifer. Genus includes new species F. motolae. |
|||||
Gen. et sp. nov |
Valid |
Schlagintweit & Rashidi |
A foraminifer belonging to the group Loftusiida, possibly a member of the family Biokovinidae. Genus includes new species F. tarburensis. |
|||||
Gen. et comb. et sp. nov |
Valid |
Szczepanik, Servais & Żylińska |
An acritarch. The type species is "Veryhachium" martinum Pittau (1985); genus also includes new species G. vidalii. |
|||||
Sp. nov |
Valid |
Agić, Moczydłowska & Yin |
Early Mesoproterozoic |
Ruyang Group |
A microfossil. |
|||
Gen. et sp. nov |
Valid |
Heads, Miller & Crane |
A gilled mushroom. Genus includes new species G. magnificus. |
|||||
Gen. et sp. nov |
Valid |
Krings et al. |
Early Devonian |
A microorganism of uncertain phylogenetic placement, most likely an alga with affinities to the Chlorophyta or Streptophyta. Genus includes new species H. aggregatus. |
||||
Sp. nov |
Valid |
Kaminski, Waskowska & Chan |
Middle Pleistocene |
A foraminifer. |
||||
Sp. nov |
Valid |
Kobayashi |
Carboniferous (Gzhelian) and Permian (Asselian) |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
|||
Gen. et sp. nov |
Valid |
Morais, Fairchild & Lahr in Morais et al. |
A vase-shaped microfossil. Genus includes new species L. lageniformis. |
|||||
Sp. nov |
Valid |
Kobayashi |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
||||
Sp. nov |
Valid |
Alves, Lima & Shimabukuro |
Early Cretaceous (Aptian) |
A haptophyte belonging to the family Nannoconaceae. |
||||
Sp. nov |
Valid |
Shi & Feng in Shi et al. |
Early Mesoproterozoic |
A member of Cyanobacteria belonging to the group Oscillatoriales. |
||||
Gen. et sp. nov |
Valid |
Morais, Fairchild & Lahr in Morais et al. |
A vase-shaped microfossil. Genus includes new species P. urucumense. |
|||||
Gen. et sp. nov |
Valid |
Dentzien-Dias, Poinar & Francischini |
Permian (Guadalupian) |
An actinomycete. Genus includes new species P. diairetus. |
||||
Gen. et sp. nov |
Valid |
Eocene-Miocene |
A member of Apicomplexa belonging to the group Piroplasmida. Genus includes new species P. calabresi. |
|||||
Sp. nov |
Valid |
Kobayashi |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
||||
Sp. nov |
Valid |
Slimani & Ţabără in Ţabără et al. |
A dinoflagellate belonging to the group Gonyaulacales and the family Gonyaulacaceae. |
|||||
Gen. et sp. nov |
Valid |
Schlagintweit & Rashidi |
A foraminifer belonging to the group Loftusiida, possibly a member of the family Spirocyclinidae. Genus includes new species P. pseudolituus. |
|||||
Sp. nov |
Valid |
Lees, Bown & Young |
A haptophyte belonging to the family Papposphaeraceae. |
|||||
Sp. nov |
Valid |
Lees, Bown & Young |
A haptophyte belonging to the family Papposphaeraceae. |
|||||
Sp. nov |
Valid |
Kobayashi |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
||||
Gen. et sp. nov |
Valid |
Bengtson in Bengtson et al. |
~1.6 billion years ago |
An alga of uncertain phylogenetic placement. Genus includes new species R. chitrakootensis. |
||||
Gen. et sp. nov |
Valid |
Sallstedt in Bengtson et al. |
~1.6 billion years ago |
A possible stem-florideophycean red algae. Genus includes new species R. lobatus. |
||||
Sp. nov |
Valid |
Kobayashi |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
||||
Sp. nov |
Valid |
Kobayashi |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
||||
Gen. et 12 sp. nov |
Valid |
Da Gama |
A calcareous nannofossil of uncertain phylogenetic placement. |
|||||
Sp. nov |
Valid |
Kobayashi |
Carboniferous (Kasimovian and Gzhelian) |
Akiyoshi Limestone Group |
A foraminifer belonging to the group Fusulinida. |
|||
Stradnerlithus? haynesiae[343] |
Sp. nov |
Valid |
Lees, Bown & Young |
A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae. |
||||
Sp. nov |
Valid |
Lees, Bown & Young |
A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae. |
|||||
Gen. et sp. nov |
Valid |
Görmüş, Ameen Lawa & Al Nuaimy |
A foraminifer belonging to the family Dicyclinidae. Genus includes new species S. brasieri. |
|||||
Gen. et sp. nov |
Valid |
Poinar |
Eocene to Miocene |
Originally described as a fungus belonging to the group Basidiomycota,[346] but this interpretation was challenged by Selosse et al. (2017).[347] Genus includes new species S. orchiphilus. |
||||
Sp. nov |
Valid |
Bown, Lees & Young |
A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae. |
|||||
Sp. nov |
Valid |
Bown, Lees & Young |
A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae. |
|||||
Gen. et sp. nov |
Valid |
Schlagintweit, Rashidi & Barani |
Late Cretaceous (late Maastrichtian) |
A foraminifer. Genus includes new species T. zagrosiana. |
||||
Gen. et sp. nov |
Valid |
Morais, Fairchild & Lahr in Morais et al. |
A vase-shaped microfossil. Genus includes new species T. rata. |
|||||
Sp. nov |
Valid |
Lees, Bown & Young |
A haptophyte of uncertain phylogenetic placement. |
|||||
Sp. nov |
Valid |
Shi & Feng in Shi et al. |
Early Mesoproterozoic |
A member of Cyanobacteria belonging to the group Nostocales. |
||||
Gen. et sp. nov |
Valid |
Krings & Harper |
Early Devonian |
A fungus described on the basis of a reproductive unit. Genus includes new species W. spinifera. |
||||
Gen. et sp. nov |
Valid |
Shi & Feng in Shi et al. |
Late Paleoproterozoic |
A probable eukaryotic microfossil. Genus includes new species X. sinica. |
General paleontology
editResearch related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.
- A study on the links between changes in the composition of exposed continental crust and oxygenation of the atmosphere in the Precambrian is published by Smit & Mezger (2017).[351]
- A review of the progress in modeling the Snowball Earth atmosphere, cryosphere, hydrosphere and lithosphere, specifically as it pertains to Cryogenian geology and geobiology, is published by Hoffman et al. (2017).[352]
- A revised record of fossil eukaryotic steroids during the Neoproterozoic is presented by Brocks et al. (2017), who argue that bacteria were the only notable primary producers in the oceans before the Cryogenian, and that rapid rise of marine planktonic algae to domination occurred in the narrow time interval between the Sturtian and Marinoan glaciations, 659–645 million years ago, likely driving the subsequent radiation of animals in the Ediacaran period.[353]
- A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).[354]
- A study on the water column geochemistry of the Yangtze Sea during the Ediacaran-Cambrian transition and its implications for the relationship between ocean oxygenation and Early Cambrian animal diversification is published by Zhang et al. (2017).[355]
- A study on the links between the expansion of siliceous sponges and seawater oxygenation during the Ediacaran–Cambrian transition is published by Tatzel et al. (2017).[356]
- A study on the factors influencing marine invertebrate diversity dynamics through the Phanerozoic is published by Cermeño et al. (2017).[357]
- Edwards et al. (2017) identify a strong temporal link between the rising atmospheric oxygen levels and the Great Ordovician Biodiversification Event.[358]
- A study on the impact of the drawdown of atmospheric carbon dioxide (caused by burial of organic carbon leading to the formation of coal) on the climate around the Carboniferous/Permian boundary is published by Feulner (2017).[359]
- A comprehensive reconstruction of the Permian (Lopingian) Bletterbach Biota (Italy) and a review of other best-known Lopingian terrestrial associations containing both vertebrate and plant remains is published by Bernardi et al. (2017).[360]
- A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, identifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).[361]
- Viglietti, Rubidge & Smith (2017) review the tectonic setting of the Late Permian Karoo Basin (South Africa), provide an updated basin development model, and interpret their findings as indicating that the climatic changes associated with the Permian–Triassic extinction event were occurring much lower in the stratigraphy (and thus earlier) than previously documented.[362]
- A summary of knowledge of the impact of Permian-Triassic mass extinction on reef ecosystems, and on their recovery after this extinction, is presented by Martindale, Foster & Velledits (2017).[363]
- A study on benthic invertebrate communities from the Lower Triassic Werfen Formation (Italy), aiming to test whether carbon isotope perturbations during the Early Triassic were associated with biotic crises that impeded benthic recovery after the Permian–Triassic extinction event, is published by Foster et al. (2017).[364]
- A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).[365]
- A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).[366]
- A study on the oxygen levels in Earth's oceans during and after the Triassic–Jurassic extinction event as indicated by uranium isotopes in shallow-marine limestones in the Lombardy Basin (northern Italy) is published by Jost et al. (2017).[367]
- A high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America and a study on the stratigraphic ranges of North American dinosaurs is published by Fowler (2017).[368]
- A study on the impact that large amounts of soot injected into the atmosphere during the Cretaceous–Paleogene extinction event (probably caused by global wildfires) had on the climate is published by Bardeen et al. (2017).[369]
- A study estimating the decrease of the air temperature and the duration of the climate cooling caused by Chicxulub impact at the end of the Cretaceous is published by Brugger, Feulner & Petri (2017).[370]
- A study on the volume of the climate-active gases released from sedimentary rocks as a result of the Chicxulub impact, as well as on their effect on the global climate, is published by Artemieva, Morgan & Expedition 364 Science Party (2017).[371]
- Kaiho & Oshima (2017) calculate the amounts of stratospheric soot and sulfate formed by a virtual asteroid impact at various global locations, and conclude that the Cretaceous–Paleogene extinction event was caused by the Chicxulub impact happening at the hydrocarbon-rich, sulfate-dominated area on the Earth's surface, and that an impact at a low–medium hydrocarbon area on Earth would be unlikely to cause mass extinction.[372]
- A study on the data sets of molluscan fossils from the Cretaceous–Paleogene of the Seymour Island (Antarctica) is published by Tobin (2017), who identifies possible evidence of two separate extinction events, one prior to the Cretaceous–Paleogene boundary, and one simultaneous with the bolide impact at the Cretaceous–Paleogene boundary.[373]
- A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).[374]
- A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).[375]
- A study on the preservation of skin and keratinous integumentary structures in tetrapod fossils through time is published by Eliason et al. (2017).[376]
- A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).[377]
- A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).[378]
- A study on the evolution of the shape of brain and skull roof during the transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds is published by Fabbri et al. (2017).[379]
- A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).[380]
- Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.[381]
- A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).[382]
- A new tetrapod assemblage from the lowermost levels of the Triassic Chañares Formation (Argentina), dominated by fossils of Tarjadia ruthae, dicynodonts and cynodonts, and also including fossils of other pseudosuchians and rhynchosaurs, is described by Ezcurra et al. (2017), who also reinterpret Tarjadia ruthae and Archeopelta arborensis as erpetosuchid archosaurs.[383]
- A study on the cosmopolitanism of terrestrial amniote faunas in the aftermath of the Permian–Triassic extinction event and Triassic–Jurassic extinction event is published by Button et al. (2017).[384]
- Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.[385]
- A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).[386]
- A study evaluating the utility of oxygen-isotope compositions of fossilised foraminifera tests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, is published by Bernard et al. (2017).[387][388][389]
- A study on the glacial development and environmental changes in the Aurora Subglacial Basin (Antarctica) throughout the Cenozoic based on geophysical and geological evidence is published by Gulick et al. (2017).[390]
- A study on the onset duration of the Paleocene–Eocene Thermal Maximum is published by Kirtland Turner et al. (2017).[391]
- A study on the relationship between volcanic activity in the North Atlantic Igneous Province and the Paleocene–Eocene Thermal Maximum is published by Gutjahr et al. (2017).[392]
- A study on the environment in the area corresponding to the present-day Amazon basin in the Miocene as indicated by data from the shark and ray fossils from the Pirabas Formation (Brazil) is published by Aguilera et al. (2017).[393]
- A study on the impact of the Messinian salinity crisis on Mediterranean magmatism is published by Sternai et al. (2017).[394]
- A study on the changes of ice sheets volume and sea level during the late Pliocene is published by de Boer et al. (2017).[395]
- Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.[396]
- A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).[397]
- Tierney, deMenocal & Zander (2017) reconstruct temperature and aridity in the Horn of Africa region spanning the past 200,000 years.[398]
- A vertebrate fauna from the Pleistocene and Holocene of Sumba (Indonesia) is described by Turvey et al. (2017).[399]
- A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.[400]
- Hagstrum et al. (2017) report impact-related microspherules and elevated platinum concentrations found in fine-grained sediments retained within Late Pleistocene bison and mammoth skull fragments from Alaska and Yukon, and interpret the findings as evidence of repeated airbursts and ground/ice impacts associated with multiple episodes of cosmic impact.[401]
- A study on changes in landscape moisture in the rangelands in Europe, Siberia and the Americas during the late Pleistocene as indicated by data from the bones of megaherbivores is published by Rabanus-Wallace et al. (2017).[402]
References
edit- ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- ^ Qiang Ou; Jian Han; Zhifei Zhang; Degan Shu; Ge Sun; Georg Mayer (2017). "Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity". Proceedings of the National Academy of Sciences of the United States of America. 114 (33): 8835–8840. Bibcode:2017PNAS..114.8835O. doi:10.1073/pnas.1701650114. PMC 5565419. PMID 28760981.
- ^ Baichuan Duan; Xi-Ping Dong; Luis Porras; Kelly Vargas; John A. Cunningham; Philip C. J. Donoghue (2017). "The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan". Proceedings of the Royal Society B: Biological Sciences. 284 (1869): 20172188. doi:10.1098/rspb.2017.2188. PMC 5745419. PMID 29237861.
- ^ Aaron D. Sappenfield; Lidya G. Tarhan; Mary L. Droser (2017). "Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach?". Geological Magazine. 154 (4): 859–874. Bibcode:2017GeoM..154..859S. doi:10.1017/S0016756816000443. S2CID 133404332.
- ^ Jerzy Dzik; Andrzej Baliński; Yuanlin Sun (2017). "The origin of tetraradial symmetry in cnidarians". Lethaia. 50 (2): 306–321. doi:10.1111/let.12199.
- ^ Guangxu Wang; Renbin Zhan; Bing Huang; Ian G. Percival (2017). "Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution". Geological Magazine. 154 (4): 829–836. Bibcode:2017GeoM..154..829W. doi:10.1017/S0016756816000406. S2CID 132435154.
- ^ Chiara Tornabene; Rowan C. Martindale; Xingchen T. Wang; Morgan F. Schaller (2017). "Detecting Photosymbiosis in Fossil Scleractinian Corals". Scientific Reports. 7 (1): Article number 9465. Bibcode:2017NatSR...7.9465T. doi:10.1038/s41598-017-09008-4. PMC 5572714. PMID 28842582.
- ^ a b c d e Marie Coen-Aubert (2017). "Givetian rugose corals from the Zemmour in Mauritania". Geologica Belgica. 20 (3–4): 161–180. doi:10.20341/gb.2017.009.
- ^ Yong Yi Zhen; Guangxu Wang; Ian G. Percival (2017). "Conodonts and tabulate corals from the Upper Ordovician Angullong Formation of central New South Wales, Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (2): 141–168. doi:10.1080/03115518.2016.1185869. S2CID 133036752.
- ^ Shuji Niko; Masayuki Fujikawa (2017). "Visean (Early Carboniferous) tabulate corals from the Akiyoshi Limestone Group, Yamaguchi Prefecture". Bulletin of the Akiyoshi-dai Museum of Natural History. 52: 1–4.
- ^ a b c Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 5. The Family Bothrophyllidae Fomichev, 1953". Acta Geologica Polonica. 67 (2): 249–298. Bibcode:2017AcGeP..67..249F. doi:10.1515/agp-2017-0013.
- ^ John S. Peel (2017). "A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia". Journal of Paleontology. 91 (5): 871–882. Bibcode:2017JPal...91..871P. doi:10.1017/jpa.2017.49. S2CID 134826884.
- ^ Wei-hua Liao; Xue-ping Ma (2017). "Devonian corals from Zhaotong, NE Yunnan (2)——Givetian rugose corals". Acta Palaeontologica Sinica. 56 (1): 68–81. Archived from the original on 2020-11-27. Retrieved 2017-05-25.
- ^ a b c d e f Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 6. The Family Aulophyllidae Dybowski, 1873". Acta Geologica Polonica. 67 (4): 459–514. Bibcode:2017AcGeP..67..459F. doi:10.1515/agp-2017-0028.
- ^ a b c E. W. Bamber; S. Rodríguez; B. C. Richards; B. L. Mamet (2017). "Uppermost Viséan and Serpukhovian (Mississippian) rugose corals and biostratigraphy, Canadian Cordillera". Palaeontographica Canadiana. 36: 1–169. ISBN 978-1-897095-80-5.
- ^ a b c d e Galina K. Melnikova; Ewa Roniewicz (2017). "Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia". Palaeoworld. 26 (1): 124–148. doi:10.1016/j.palwor.2016.01.001.
- ^ Bernard Lathuilière; Sylvain Charbonnier; Jean-Michel Pacaud (2017). Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals (PDF). Vol. 89. pp. 133–150. ISBN 978-3-946705-00-0.
{{cite book}}
:|journal=
ignored (help) - ^ Sergio Rodríguez; Ian D. Somerville; Ismail Said (2017). "New species of the rugose coral genus Lithostrotion Fleming in the upper Viséan from the Azrou-Khenifra Basin (Morocco)" (PDF). Spanish Journal of Palaeontology. 32 (1): 27–34.
- ^ Stephen D. Cairns (2017). "New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic". Journal of Paleontology. 91 (3): 407–416. Bibcode:2017JPal...91..407C. doi:10.1017/jpa.2016.83. S2CID 55731989.
- ^ Shuji Niko; Shigeyuki Suzuki; Eiji Taguchi (2017). "Petrophyllia niimiensis, a new Miocene species of scleractinian coral from the Bihoku Group in Niimi City, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 52: 5–9.
- ^ Shuji Niko (2017). "Early Permian tabulate corals from the Funafuseyama Limestone, Gifu Prefecture, Japan" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 43: 19–25.
- ^ Yunhuan Liu; Tiequan Shao; Huaqiao Zhang; Qi Wang; Yanan Zhang; Cheng Chen; Yongchun Liang; Jiaqi Xue (2017). "A new scyphozoan from the Cambrian Fortunian Stage of South China". Palaeontology. 60 (4): 511–518. Bibcode:2017Palgy..60..511L. doi:10.1111/pala.12306.
- ^ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2017). "Middle Devonian tabulate corals from the Kotaki area, Niigata Prefecture, central Japan". Science Reports of Niigata University. (Geology). 32: 25–31. hdl:10191/47651.
- ^ Xing Wang; Jian Han; Jean Vannier; Qiang Ou; Xiaoguang Yang; Kentaro Uesugi; Osamu Sasaki; Tsuyoshi Komiya (2017). "Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China". Palaeontology. 60 (6): 853–867. Bibcode:2017Palgy..60..853W. doi:10.1111/pala.12320. S2CID 90297513.
- ^ Rosemarie Christine Baron-Szabo (2017). "Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian" (PDF). Jahrbuch der Geologischen Bundesanstalt. 157 (1–4): 241–260.
- ^ Andrzej Baliński; Yuanlin Sun (2017). "Early Ordovician black corals from China". Bulletin of Geosciences. 92 (1): 1–12. doi:10.3140/bull.geosci.1632.
- ^ Marcus M. Key, Jr.; Matúš Hyžný; Erfan Khosravi; Natália Hudáčková; Ninon Robin; Majid Mirzaie Ataabadi (2017). "Bryozoan epibiosis on fossil crabs: a rare occurrence from the Miocene of Iran". PALAIOS. 32 (8): 491–505. Bibcode:2017Palai..32..491K. doi:10.2110/palo.2017.040. S2CID 134042609.
- ^ a b Andrej Ernst; Daniel Vachard (2017). "Middle Pennsylvanian bryozoans of Cerros de Tule, Sonora, Mexico". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 11–38. doi:10.1127/njgpa/2017/0660.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2017). "Bryozoans from the lower Miocene Chipola Formation, Calhoun County, Florida, USA". Bulletin of the Florida Museum of Natural History. 53 (4): 97–200. doi:10.58782/flmnh.pgmm1110.
- ^ a b c d e Silviu O. Martha; Birgit Niebuhr; Joachim Scholz (2017). "Cheilostome Bryozoen" (PDF). Geologica Saxonica. 62: 11–52. Archived from the original (PDF) on 2017-09-23. Retrieved 2017-09-22.
- ^ Andrej Ernst; Zoya Tolokonnikova; Edouard Poty; Bernard Mottequin (2017). "A bryozoan fauna from the Mississippian (Tournaisian and Viséan) of Belgium". Geobios. 50 (2): 105–121. Bibcode:2017Geobi..50..105E. doi:10.1016/j.geobios.2017.02.002.
- ^ a b c d e f g h i Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2017). "Fenestrate Bryozoa of the Moniello Formation (Lower-Middle Devonian, NW Spain)". Bulletin of Geosciences. 92 (2): 153–183. doi:10.3140/bull.geosci.1668.
- ^ a b c d Emanuela Di Martino; Paul D. Taylor; Laura J. Cotton; Paul N. Pearson (2017). "First bryozoan fauna from the Eocene–Oligocene transition in Tanzania" (PDF). Journal of Systematic Palaeontology. 16 (3): 225–243. doi:10.1080/14772019.2017.1284163. S2CID 89671986.
- ^ a b Emanuela Di Martino; Paul D. Taylor; Dennis P. Gordon; Lee Hsiang Liow (2017). "New bryozoan species from the Pleistocene of the Wanganui Basin, North Island, New Zealand". European Journal of Taxonomy (345): 1–15. doi:10.5852/ejt.2017.345.
- ^ a b Andrej Ernst; Peter Königshof; Ali Bahrami; Mehdi Yazdi; Iliana Boncheva (2017). "A Late Devonian (Frasnian) bryozoan fauna from central Iran". Palaeobiodiversity and Palaeoenvironments. 97 (3): 541–552. doi:10.1007/s12549-016-0269-5. S2CID 131810146.
- ^ a b L. A. Viskova; A. V. Pakhnevich (2017). "Bryozoan (Stenolaemata) records from the upper Callovian (Middle Jurassic) of the Moscow region". Paleontological Journal. 51 (3): 258–263. doi:10.1134/S0031030117030121. S2CID 133921567.
- ^ M. A. Sonar; R. V. Pawar (2017). "Some fossil species of catenicellid and schizoporelloid bryozoans from the Cenozoic sediments of western Kachchh, Gujarat, India". Journal of the Palaeontological Society of India. 62 (1): 31–38. doi:10.1177/0971102320170103.
- ^ Zoya Tolokonnikova; Jiří Kalvoda; Tomáš Kumpan (2017). "An early Tournaisian (Mississippian) bryozoan fauna from the Moravian Karst (Rhenohercynian Zone, Czech Republic)". Geobios. 50 (4): 341–348. Bibcode:2017Geobi..50..341T. doi:10.1016/j.geobios.2017.06.006.
- ^ a b c Kamil Zágoršek; Mehdi Yazdi; Ali Bahrami (2017). "Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 109–118. doi:10.1127/njgpa/2017/0631.
- ^ a b Paul D. Taylor; Silviu O. Martha (2017). "Cenomanian cheilostome bryozoans from Devon, England". Annales de Paléontologie. 103 (1): 19–31. Bibcode:2017AnPal.103...19T. doi:10.1016/j.annpal.2016.11.002.
- ^ Silviu O. Martha; Paul D. Taylor (2017). "The oldest erect cheilostome bryozoan: Jablonskipora gen. nov. from the upper Albian of south-west England". Papers in Palaeontology. 4 (1): 55–66. doi:10.1002/spp2.1097. S2CID 91058350.
- ^ a b c Laís V. Ramalho; Vladimir A. Távora; Kamil Zagorsek (2017). "New records of the Bryozoan Metrarabdotos from the Pirabas Formation (Lower Miocene), Pará State, Brazil". Palaeontologia Electronica. 20 (2): Article number 20.2.32A. doi:10.26879/704.
- ^ Paul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera". Journal of Natural History. 52 (25–26): 1657–1721. doi:10.1080/00222933.2018.1481235. S2CID 89706861.
- ^ Patrick N. Wyse Jackson; Andrej Ernst; Juan L. Suárez Andrés (2017). "Articulation in the Family Rhabdomesidae (Cryptostomata: Bryozoa) from the Mississippian of Ireland". Irish Journal of Earth Sciences. 35: 35–44. doi:10.3318/ijes.2017.35.35. S2CID 134697040.
- ^ a b Petr V. Fedorov; Anna V. Koromyslova; Silviu O. Martha (2017). "The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae". PalZ. 91 (3): 353–373. doi:10.1007/s12542-017-0351-y. S2CID 135228988.
- ^ Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2017). "First record of a fossil selenariid bryozoan in South America". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 365–368. doi:10.1080/03115518.2017.1283054. hdl:11336/47794. S2CID 132337410.
- ^ Dennis P. Gordon; Kjetil L. Voje; Paul D. Taylor (2017). "Living and fossil Steginoporellidae (Bryozoa: Cheilostomata) from New Zealand". Zootaxa. 4350 (2): 345–362. doi:10.11646/zootaxa.4350.2.9. PMID 29245558.
- ^ Seth Finnegan; Christian M. Ø. Rasmussen; David A. T. Harper (2017). "Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods". Biology Letters. 13 (9): 20170400. doi:10.1098/rsbl.2017.0400. PMC 5627174. PMID 28954854.
- ^ Claudio Garbelli; Lucia Angiolini; Shu-zhong Shen (2017). "Biomineralization and global change: A new perspective for understanding the end-Permian extinction". Geology. 45 (1): 19–22. Bibcode:2017Geo....45...19G. doi:10.1130/G38430.1.
- ^ a b c C.B. Skovsted; I. Knight; U. Balthasar; W.D. Boyce (2017). "Depth related brachiopod faunas from the lower Cambrian Forteau Formation of southern Labrador and western Newfoundland, Canada". Palaeontologia Electronica. 20 (3): Article number 20.3.54A. doi:10.26879/775. hdl:10026.1/11606.
- ^ József Pálfy; Zsófia Kovács; Gregory D. Price; Attila Vörös; Gary G. Johannson (2017). "A new occurrence of the Early Jurassic brachiopod Anarhynchia from the Canadian Cordillera confirms its membership in chemosynthesis-based ecosystems" (PDF). Canadian Journal of Earth Sciences. 54 (12): 1179–1193. Bibcode:2017CaJES..54.1179P. doi:10.1139/cjes-2017-0179. hdl:1807/79681.
- ^ a b c d e f g h Maria Liljeroth; David A. T. Harper; Hilary Carlisle; Arne T. Nielsen (2017). Fossils and Strata, Number 62, Ordovician rhynchonelliformean brachiopods from Co. Waterford, SE Ireland: palaeobiogeography of the Leinster Terrane. Wiley-Blackwell. pp. 1–164. doi:10.1002/9781119412595. ISBN 978-1-119-41255-7.
- ^ a b José F. Baeza-Carratalá; Matías Reolid; Fernando García Joral (2017). "New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event". Bulletin of Geosciences. 92 (2): 233–256. doi:10.3140/bull.geosci.1631. hdl:10045/68270.
- ^ a b V. V. Baranov (2017). "New brachiopods from the Ordovician of northeastern Russia". Paleontological Journal. 51 (1): 47–52. doi:10.1134/S0031030117010038. S2CID 132869480.
- ^ A. A. Madison (2017). "To the revision of the Upper Ordovician Bilobia Cooper (Strophomenida, Brachiopoda)". Paleontological Journal. 51 (4): 368–373. doi:10.1134/S0031030117040062. S2CID 90654526.
- ^ a b A. M. Popov; Yu. D. Zakharov (2017). "Olenekian brachiopods from the Kamenushka River basin, South Primorye: New data on the brachiopod recovery after the end-Permian mass extinction". Paleontological Journal. 51 (7): 735–745. doi:10.1134/S0031030117070085. S2CID 89881140.
- ^ a b Maria Aleksandra Bitner; Arnold Müller (2017). "Late Eocene (Priabonian) brachiopod fauna from Dnipropetrovsk, eastern Ukraine". Bulletin of Geosciences. 92 (2): 211–231. doi:10.3140/bull.geosci.1661.
- ^ a b Danièle Gaspard (2017). "Deux nouvelles espèces de brachiopodes rhynchonelliformes de l'Albien stratotypique (Bassin de Paris) – mise au point". Annales de Paléontologie. 103 (2): 93–100. Bibcode:2017AnPal.103...93G. doi:10.1016/j.annpal.2017.04.004.
- ^ a b c d e f g Dan Lü; Xue-Ping Ma (2017). "Small-sized brachiopods from the Upper Frasnian (Devonian) of central Hunan, China". Palaeoworld. 26 (3): 456–478. doi:10.1016/j.palwor.2017.01.005.
- ^ Jun-ichi Tazawa; Hiroaki Inose; Naotomo Kaneko (2017). "Cyrtospirifer ainosawensis sp. nov., from the Upper Devonian Ainosawa Formation, Soma, Abukuma Mountains, northeastern Japan". The Journal of the Geological Society of Japan. 123 (8): 653–656. doi:10.5575/geosoc.2017.0011.
- ^ Jun-ichi Tazawa (2017). "Discovery of Cyrtospirifer (Late Devonian Brachiopoda) from Choanji in the South Kitakami Belt, northeastern Japan". The Journal of the Geological Society of Japan. 123 (2): 101–105. doi:10.5575/geosoc.2016.0059.
- ^ a b c L.E. Popov; L.R.M. Cocks (2017). "The World's second oldest strophomenoid-dominated benthic assemblage in the first Dapingian (Middle Ordovician) brachiopod fauna identified from Iran". Journal of Asian Earth Sciences. 140: 1–12. Bibcode:2017JAESc.140....1P. doi:10.1016/j.jseaes.2017.03.007.
- ^ T.N. Smirnova; G.T. Ushatinskaya; E.A. Zhegallo; I.V. Panchenko (2017). "Shell microstructure of Discinisca suborbicularis sp. nov. (Brachiopoda, Lingulata) from the Upper Jurassic of Western Siberia". Paleontological Journal. 51 (5): 480–490. doi:10.1134/S0031030117050124. S2CID 135081073.
- ^ T. N. Smirnova; G. T. Ushatinskaya; E. A. Zhegallo; I. V. Panchenko (2017). "First records of brachiopods of the family Discinidae (Class Lingulata) from the Upper Jurassic of West Siberia". Paleontological Journal. 51 (2): 155–160. doi:10.1134/S0031030117020150. S2CID 132978017.
- ^ Paul Copper; Jisuo Jin (2017). "Early athyride brachiopod evolution through the Ordovician-Silurian mass extinction and recovery, Anticosti Island, eastern Canada". Journal of Paleontology. 91 (6): 1123–1147. Bibcode:2017JPal...91.1123C. doi:10.1017/jpa.2017.74. S2CID 134708988.
- ^ a b Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Zhiliang Zhang; Zhifei Zhang (2017). "Unusual pitted Ordovician brachiopods from the East Baltic: the significance of coarsely pitted ornamentations in linguliforms". Papers in Palaeontology. 3 (3): 387–399. doi:10.1002/spp2.1080. S2CID 134310799.
- ^ a b "Archived copy". Archived from the original on 2020-03-17. Retrieved 2017-05-11.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^ a b c d Shuzhong Shen; Yugan Jin; Yan Zhang; Elizabeth A. Weldon (2017). "Permian brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan (eds.). Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 651–881.
- ^ Adam T. Halamski; Amine Cherif (2017). "Oxfordian brachiopods from the Saïda and Frenda mountains (Tlemcenian Domain, north-western Algeria)". Annales Societatis Geologorum Poloniae. 87 (2): 141–156. doi:10.14241/asgp.2017.006.
- ^ Jisuo Jin; Lars E. Holmer (2017). "Pentameroid brachiopod Karlsorus new genus from the upper Wenlock (Silurian) Slite Beds, Gotland, Sweden". Journal of Paleontology. 91 (5): 911–918. Bibcode:2017JPal...91..911J. doi:10.1017/jpa.2017.46. S2CID 134495311.
- ^ a b c Bernard Mottequin; Eric Simon (2017). "New insights on Tournaisian–Visean (Carboniferous, Mississippian) athyridide, orthotetide, rhynchonellide, and strophomenide brachiopods from southern Belgium". Palaeontologia Electronica. 20 (2): Article number 20.2.28A. doi:10.26879/758.
- ^ Fengyu Wang; Jing Chen; Xu Dai; Haijun Song (2017). "A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction". Papers in Palaeontology. 3 (3): 425–439. doi:10.1002/spp2.1083. S2CID 134867277.
- ^ a b Tatiana L. Modzalevskaya; Leonid E. Popov; Mansoureh Ghobadi Pour; Michail S. Dufour (2017). "First report on the Early Devonian (Lochkovian) brachiopods from eastern Central Pamirs, Tajikistan". Journal of Asian Earth Sciences. 138: 427–438. Bibcode:2017JAESc.138..427M. doi:10.1016/j.jseaes.2017.02.030.
- ^ Yong-Qin Mao; Yuan-Long Zhao; Cheng-Wen Wang; Timothy Topper (2017). "A fresh look at Nisusia Walcott, 1905 from the Cambrian Kaili Formation in Guizhou". Palaeoworld. 26 (1): 12–24. doi:10.1016/j.palwor.2016.03.001.
- ^ a b David A.T. Harper; Matthew A. Parkes; Zhan Ren-Bin (2017). "Late Ordovician deep-water brachiopod fauna from Raheen, Waterford Harbour, Ireland" (PDF). Irish Journal of Earth Sciences. 35: 1–18. doi:10.3318/ijes.2017.35.1. S2CID 134598008.
- ^ G.A. Cisterna; A.F. Sterren; O. López Gamundí; M.M. Vergel (2017). "Carboniferous postglacial faunas in the late Serpukhovian–Bashkirian interval of central-western Argentina". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 413–431. doi:10.1080/03115518.2017.1299795. hdl:11336/44723. S2CID 133077581.
- ^ Urszula Radwańska (2017). "Selected Oxfordian brachiopods from Zalas (Cracow Upland, Poland)". Acta Geologica Polonica. 67 (3): 423–430. Bibcode:2017AcGeP..67..433R. doi:10.1515/agp-2017-0021.
- ^ Mohammad-Reza Kebria-Ee Zadeh; Leonid E. Popov; Mansoureh Ghobadi Pour (2017). "A new orthide brachiopod genus from the Middle Ordovician of the Alborz Mountains, Iran". GFF. 139 (4): 327–332. doi:10.1080/11035897.2017.1347197. S2CID 135028500.
- ^ Debahuti Mukherjee; Sabyasachi Shome (2017). "Tithonian brachiopods from the Kachchh and Jaisalmer basins, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 187–199. doi:10.1127/njgpa/2017/0676.
- ^ Jenaro L. García-Alcalde; Zarela Herrera (2017). "Tectogonotoechia rivasi n. sp. A new lower Pragian Celtiberian (Spain) Ancystrorhynchoidea rhynchonellid brachiopod" (PDF). Spanish Journal of Palaeontology. 32 (1): 115–128.
- ^ Howard R. Feldman (2017). "Tunethyris blodgetti sp. nov. (Brachiopoda, Terebratulida) from the Middle Triassic of the Makhtesh Ramon, southern Israel". Annales Societatis Geologorum Poloniae. 87 (1): 89–99. doi:10.14241/asgp.2017.004.
- ^ M. Mergl; İ. Hoşgör; I. O. Yilmaz; S. Zamora; J. Colmenar (2017). "Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana". Historical Biology: An International Journal of Paleobiology. 30 (7): 1015–1029. doi:10.1080/08912963.2017.1327531. S2CID 134763114.
- ^ Shuzhong Shen; Li Qiao; Yan Zhang; Yuanlin Sun; Yugan Jin (2017). "Carboniferous brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan (eds.). Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 559–649.
- ^ Sarah L. Sheffield; Colin D. Sumrall (2017). "Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology". Journal of Paleontology. 91 (4): 755–766. Bibcode:2017JPal...91..755S. doi:10.1017/jpa.2016.159. S2CID 133298313.
- ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic". Geology. 45 (6): 531–534. Bibcode:2017Geo....45..531T. doi:10.1130/G38909.1.
- ^ Daniel B. Blake (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e417. Bibcode:2017Geo....45E.417B. doi:10.1130/G39163C.1.
- ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e418. Bibcode:2017Geo....45E.418T. doi:10.1130/G39210Y.1.
- ^ Mariusz A. Salamon; Przemysław Gorzelak (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e419. Bibcode:2017Geo....45E.419S. doi:10.1130/G39196C.1.
- ^ Ben Thuy (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e420. Bibcode:2017Geo....45E.420T. doi:10.1130/G39221Y.1.
- ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (11): e431. Bibcode:2017Geo....45E.431H. doi:10.1130/G39575C.1.
- ^ Ben Thuy; Hans H. Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (11): e432. Bibcode:2017Geo....45E.432T. doi:10.1130/G39684Y.1.
- ^ David F. Wright (2017). "Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)". Journal of Paleontology. 91 (4): 799–814. Bibcode:2017JPal...91..799W. doi:10.1017/jpa.2016.141. S2CID 5018503.
- ^ Selina R. Cole (2017). "Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata)". Journal of Paleontology. 91 (4): 815–828. Bibcode:2017JPal...91..815C. doi:10.1017/jpa.2016.137. S2CID 90459044.
- ^ David F. Wright; William I. Ausich; Selina R. Cole; Mark E. Peter; Elizabeth C. Rhenberg (2017). "Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata)". Journal of Paleontology. 91 (4): 829–846. Bibcode:2017JPal...91..829W. doi:10.1017/jpa.2016.142. S2CID 13806992.
- ^ David F. Wright (2017). "Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids". Scientific Reports. 7 (1): Article number 13745. Bibcode:2017NatSR...713745W. doi:10.1038/s41598-017-13979-9. PMC 5653864. PMID 29062117.
- ^ Elizabeth G. Clark; Bhart-Anjan S. Bhullar; Simon A. F. Darroch; Derek E. G. Briggs (2017). "Water vascular system architecture in an Ordovician ophiuroid". Biology Letters. 13 (12): 20170635. doi:10.1098/rsbl.2017.0635. PMC 5746540. PMID 29212753.
- ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2017). "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway". PALAIOS. 32 (4): 218–230. Bibcode:2017Palai..32..218K. doi:10.2110/palo.2016.079. S2CID 131975877.
- ^ Aaron W. Hunter; Neal L. Larson; Jamie Brezina (2018). "Comment to Kato et al. (2017), "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". PALAIOS. 33 (6): 282–283. Bibcode:2018Palai..33..282H. doi:10.2110/palo.2017.071. S2CID 133937083.
- ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2018). "Reply to comment on Kato et al. (2017) "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". PALAIOS. 33 (6): 284–285. Bibcode:2018Palai..33..284K. doi:10.2110/palo.2018.028. S2CID 134000894.
- ^ Mohamed Said M. Ali (2017). "First Record of a New Species of Amblypygus (Echinoidea) from the Middle Miocene of Mersa Matruh, Western Desert, Egypt". Paleontological Research. 21 (1): 44–53. doi:10.2517/2016PR016. S2CID 132772107.
- ^ a b c d e f Selina R. Cole; William I. Ausich; Jorge Colmenar; Samuel Zamora (2017). "Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain)". Journal of Paleontology. 91 (4): 715–734. Bibcode:2017JPal...91..715C. doi:10.1017/jpa.2016.135. hdl:20.500.12468/565. S2CID 132280262.
- ^ a b c d e f Hans Hess; Ben Thuy (2017). "Extraordinary diversity of feather stars (Echinodermata: Crinoidea: Comatulida) from a Lower Jurassic (Pliensbachian–Toarcian) rock reef of Feuguerolles (Normandy, France)". Swiss Journal of Palaeontology. 136 (2): 301–321. doi:10.1007/s13358-016-0122-5. S2CID 132449128.
- ^ a b Daniel B. Blake (2017). "Two new Carboniferous Asteroidea (Echinodermata) of the family Urasterellidae". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 284 (1): 65–73. doi:10.1127/njgpa/2017/0652.
- ^ a b c Mohamed Said M. Ali (2017). "Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt". Journal of African Earth Sciences. 133: 46–73. Bibcode:2017JAfES.133...46A. doi:10.1016/j.jafrearsci.2017.04.031.
- ^ a b c Timothy A.M. Ewin; Ben Thuy (2017). "Brittle stars from the British Oxford Clay: unexpected ophiuroid diversity on Jurassic sublittoral mud bottoms". Journal of Paleontology. 91 (4): 781–798. Bibcode:2017JPal...91..781E. doi:10.1017/jpa.2016.162. S2CID 132581349.
- ^ Patrick D. McDermott; Christopher R. C. Paul (2017). "Ateleocystites? lansae sp. nov. (Mitrata, Anomalocystitidae) from the Upper Ordovician of South Wales". Geological Journal. 52 (1): 1–13. doi:10.1002/gj.2712. S2CID 140153267.
- ^ Bálint Polonkai; Andreas Kroh; Ágnes Görög; Ildikó Selmeczi; Mihály Dunai; Emese Réka Bodor (2017). "First occurrence of echinoid genus Brissus in the Badenian (Middle Miocene) of Hungary and description of Brissus mihalyi n. sp". Földtani Közlöny. 147 (4): 383–398. doi:10.23928/foldt.kozl.2017.147.4.383.
- ^ Daniel B. Blake; Stephen K. Donovan; David A.T. Harper (2017). "A new Silurian ophiuroid from the west of Ireland" (PDF). Irish Journal of Earth Sciences. 35: 57–66. doi:10.3318/ijes.2017.35.57. S2CID 134782375.
- ^ Luis E. Silva-Martínez; Alberto Blanco-Piñón; Jesús A. de León-González; Hidalgo Rodríguez-Vela (2017). "New Echinoid (Spatangoida: Toxasterinidae) from the Campanian of Coahuila, Northeastern Mexico". Boletín de la Sociedad Geológica Mexicana. 69 (2): 371–384. doi:10.18268/BSGM2017v69n2a4.
- ^ a b Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2017). "A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids". Journal of Paleontology. 91 (4): 767–780. Bibcode:2017JPal...91..767T. doi:10.1017/jpa.2016.158. S2CID 29250459.
- ^ Jeffrey R. Thompson; Elizabeth Petsios; Eric H. Davidson; Eric M. Erkenbrack; Feng Gao; David J. Bottjer (2015). "Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid". Scientific Reports. 5: Article number 15541. Bibcode:2015NatSR...515541T. doi:10.1038/srep15541. PMC 4614444. PMID 26486232.
- ^ Elise Nardin; Bertrand Lefebvre; Oldřich Fatka; Martina Nohejlová; Libor Kašička; Miroslav Šinágl; Michal Szabad (2017). "Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic". Journal of Paleontology. 91 (4): 672–684. Bibcode:2017JPal...91..672N. doi:10.1017/jpa.2016.157. S2CID 132699375.
- ^ José Francisco Carrasco (2017). "Primera cita del género Globator (Echinoidea, Eoceno) en España. Nueva especie" (PDF). Batalleria. 25: 8–12.
- ^ a b Enric Forner i Valls (2017). "Equinoïdeus nous (Echinodermata: Echinoidea) del Campanià de Moyenne Moulouya, nord est del Marroc". Nemus: Revista de l'Ateneu de Natura. 7: 51–72.
- ^ Peter Müller; Gerhard Hahn (2017). "Grigopyrgus n. gen., a new agelacrinitid edrioasteroid genus from the Lower Devonian of the Westerwald: (Echinodermata, Rhenish Slate Mountains, Germany)". Mainzer Geowissenschaftliche Mitteilungen. 45: 93–102.
- ^ Derek E. G. Briggs; Derek J. Siveter; David J. Siveter; Mark D. Sutton; Imran A. Rahman (2017). "An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20171189. doi:10.1098/rspb.2017.1189. hdl:10044/1/53015. PMC 5597833. PMID 28904139.
- ^ Sarah L. Sheffield; William I. Ausich; Colin D. Sumrall (2017). "Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns". Canadian Journal of Earth Sciences. 55 (1): 1–7. doi:10.1139/cjes-2017-0160. hdl:1807/80500.
- ^ a b c Tony Sadler; Sarah K. Martin; Stephen J. Gallagher (2017). "Three new species of the echinoid genus Monostychia Laube, 1869 from Western Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (4): 464–473. doi:10.1080/03115518.2017.1282979. S2CID 90600580.
- ^ Mike Reich; James Sprinkle; Bertrand Lefebvre; Gertrud E. Rössner; Samuel Zamora (2017). "The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography". Journal of Paleontology. 91 (4): 735–754. Bibcode:2017JPal...91..735R. doi:10.1017/jpa.2017.7. hdl:20.500.12468/709. S2CID 135376365.
- ^ Stephen K. Donovan; Fiona E. Fearnhead (2017). "A Lower Devonian hexacrinitid crinoid (Camerata, Monobathrida) from south-west England". PalZ. 91 (2): 217–222. doi:10.1007/s12542-017-0344-x. S2CID 134913415.
- ^ a b Louis G. Zachos (2017). "Paleocene echinoid faunas of the eastern United States". Journal of Paleontology. 91 (5): 1001–1024. Bibcode:2017JPal...91.1001Z. doi:10.1017/jpa.2017.22. S2CID 134191333.
- ^ a b David F. Wright; Ursula Toom (2017). "New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata)". Palaeontology. 60 (6): 893–910. doi:10.1111/pala.12324.
- ^ S.V. Rozhnov; R.L. Parsley (2017). "A new cornute (Homalozoa: Echinodermata) from the Uppermost Middle Cambrian (Stage 3, Furongian) from northern Iran: its systematics and functional morphology". Paleontological Journal. 51 (5): 500–509. doi:10.1134/S0031030117050100. S2CID 133862520.
- ^ a b c Yingyan Mao; William I. Ausich; Yue Li; Jih-Pai Lin; Caihua Lin (2017). "New taxa and phyletic evolution of the Aeronian (Llandovery, Silurian) Petalocrinidae (Echinodermata, Crinoidea) in Guizhou, South China Block". Journal of Paleontology. 91 (3): 477–492. Bibcode:2017JPal...91..477M. doi:10.1017/jpa.2016.156. S2CID 91044529.
- ^ David R. Cordie; Brian J. Witzke (2017). "A New Crinoid Genus from the Middle Devonian of Iowa, USA (Camerata, Melocrinitidae)". Paleontological Research. 21 (1): 7–13. doi:10.2517/2016PR014. S2CID 132181687.
- ^ Samuel Zamora; Colin D. Sumrall; Xue-Jian Zhu; Bertrand Lefebvre (2017). "A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)". Geological Magazine. 154 (3): 465–475. Bibcode:2017GeoM..154..465Z. doi:10.1017/S001675681600011X. hdl:20.500.12468/771. S2CID 131161649.
- ^ Peter Müller; Gerhard Hahn (2017). "Edrioasteroidea from the Seifen Formation of the Westerwald, Rhenish Slate Mountains (Lower Devonian, Germany), part 2: Sumrallia rseiberti gen. et sp. nov". PalZ. 91 (4): 629–639. doi:10.1007/s12542-017-0356-6. S2CID 135233073.
- ^ Loïc Villier; Arnaud Brayard; Kevin G. Bylund; James F. Jenks; Gilles Escarguel; Nicolas Olivier; Daniel A. Stephen; Emmanuelle Vennin; Emmanuel Fara (2017). "Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids" (PDF). Journal of Systematic Palaeontology. 16 (5): 395–415. doi:10.1080/14772019.2017.1308972. S2CID 89854727.
- ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Prolonged co-existence of 'archaic' and 'modern' Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia". Journal of Systematic Palaeontology. 16 (11): 891–907. doi:10.1080/14772019.2017.1353549. S2CID 135162886.
- ^ Didier Néraudeau; Jean-Pierre Pineau; Jean-Christophe Dudicourt; Patrice Raboeuf (2017). "Ulphaceaster sarthacensis, nouveau genre et nouvelle espèce d'échinide Archiaciidae du Cénomanien (Sarthe, France)". Annales de Paléontologie. 103 (1): 87–91. Bibcode:2017AnPal.103...87N. doi:10.1016/j.annpal.2017.01.002.
- ^ Nils Schlüter; Frank Wiese (2017). "Late Cretaceous species of Vologesia (Echinoidea, Cassiduloida) from northern Spain". Zootaxa. 4306 (2): 261–270. doi:10.11646/zootaxa.4306.2.6.
- ^ Emilia Jarochowska; Viive Viira; Rein Einasto; Rafał Nawrot; Oskar Bremer; Peep Männik; Axel Munnecke (2017). "Conodonts in Silurian hypersaline environments: Specialized and unexpectedly diverse". Geology. 45 (1): 3–6. Bibcode:2017Geo....45....3J. doi:10.1130/G38492.1. S2CID 131974217.
- ^ Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017). "Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus". Palaeontology. 60 (4): 595–608. Bibcode:2017Palgy..60..595Z. doi:10.1111/pala.12305. hdl:2381/40480.
- ^ Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018). "Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.)". Palaeontology. 61 (5): 785–792. Bibcode:2018Palgy..61..785A. doi:10.1111/pala.12372.
- ^ Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018). "Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al.". Palaeontology. 61 (5): 793–796. Bibcode:2018Palgy..61..793P. doi:10.1111/pala.12387. hdl:2381/42406.
- ^ a b c Gustavo G. Voldman; Guillermo L. Albanesi; Gladys Ortega; María Eugenia Giuliano; Carlos Ruben Monaldi (2017). "New conodont taxa and biozones from the Lower Ordovician of the Cordillera Oriental, NW Argentina". Geological Journal. 52 (3): 394–414. Bibcode:2017GeolJ..52..394V. doi:10.1002/gj.2766. S2CID 131460368.
- ^ a b C. Giles Miller; Alan P. Heward; Angelo Mossoni; Ivan J. Sansom (2017). "Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts" (PDF). Journal of Systematic Palaeontology. 16 (7): 571–593. doi:10.1080/14772019.2017.1314985. S2CID 134576678.
- ^ Till Söte; Sven Hartenfels; Ralph Thomas Becker (2017). "Uppermost Famennian stratigraphy and facies development of the Reigern Quarry near Hachen (northern Rhenish Massif, Germany)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 633–654. doi:10.1007/s12549-017-0287-y. S2CID 134615450.
- ^ a b c d e f g h i j k l m n Xi-ping Dong; Huaqiao Zhang (2017). "Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China". Journal of Paleontology. 91 (S73): 1–89. Bibcode:2017JPal...91S...1D. doi:10.1017/jpa.2015.43.
- ^ a b N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2017). "Upper Devonian conodonts of northeastern European Russia". Paleontological Journal. 51 (10): 973–1165. doi:10.1134/S003103011710001X. S2CID 90202627.
- ^ Fernanda Serra; Nicolás A. Feltes; Miles A. Henderson; Guillermo L. Albanesi (2017). "Darriwilian (Middle Ordovician) conodont biofacies from the Central Precordillera of Argentina". Marine Micropaleontology. 130: 15–28. Bibcode:2017MarMP.130...15S. doi:10.1016/j.marmicro.2016.12.002. hdl:11336/44643.
- ^ a b c Pablo Plasencia; Ali Murat Kiliç; Aymon Baud; Milan Sudar; Francis Hirsch (2017). "The evolutionary trend of platform-denticulation in Middle Triassic Acuminate Gondolellidae (Conodonta)". Turkish Journal of Zoology. 42 (2): 187–197. doi:10.3906/zoo-1708-20.
- ^ a b c Y.D. Sun; X.T. Liu; J.X. Yan; B. Li; B. Chen; D.P.G. Bond; M.M. Joachimski; P.B. Wignall; X. Wang; X.L. Lai (2017). "Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 465, Part A: 42–63. Bibcode:2017PPP...465...42S. doi:10.1016/j.palaeo.2016.10.013.
- ^ Felix Lüddecke; Sven Hartenfels; Ralph Thomas Becker (2017). "Conodont biofacies of a monotonous middle Famennian pelagic carbonate succession (Upper Ballberg Quarry, northern Rhenish Massif)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 591–613. doi:10.1007/s12549-017-0288-x. S2CID 134191571.
- ^ Thomas J. Suttner; Erika Kido; Andreas W. W. Suttner (2017). "Icriodus marieae, a new icriodontid conodont species from the Middle Devonian". PalZ. 91 (1): 137–144. doi:10.1007/s12542-017-0337-9. PMC 5445598. PMID 28615752.
- ^ Nicholas J. Hogancamp; James E. Barrick (2017). "Ungrooved species of Idiognathodus from the lower Gzhelian (Pennsylvanian) Heebner Shale, Midcontinent North America, U.S.A." Micropaleontology. 62 (5): 385–53. Bibcode:2017MiPal..62..385H. doi:10.47894/mpal.62.5.04. S2CID 248382981.
- ^ Cassiane Negreiros Cardoso; Javier Sanz-López; Silvia Blanco-Ferrera (2017). "Pennsylvanian conodonts from the Tapajós Group (Amazonas Basin, Brazil)". Geobios. 50 (2): 75–95. Bibcode:2017Geobi..50...75C. doi:10.1016/j.geobios.2017.02.004.
- ^ Ke-Yi Hu; Yu-Ping Qi; Qiu-Lai Wang; Tamara I. Nemyrovska; Ji-Tao Chen (2017). "Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China". Palaeoworld. 26 (1): 64–82. doi:10.1016/j.palwor.2015.12.003.
- ^ Huaibao P. Liu; Stig M. Bergström; Brian J. Witzke; Derek E. G. Briggs; Robert M. McKay; Annalisa Ferretti (2017). "Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA". Journal of Paleontology. 91 (3): 493–511. Bibcode:2017JPal...91..493L. doi:10.1017/jpa.2016.155. hdl:11380/1114523. S2CID 132698401.
- ^ a b Nadezhda Izokh; Aleksandr Yazikov (2017). "Discovery of Early Carboniferous conodonts in Northern Kharaulakh Ranges (lower reaches of the Lena River, northeastern Siberia, Arctic Russia)". Revue de Micropaléontologie. 60 (2): 213–232. Bibcode:2017RvMic..60..213I. doi:10.1016/j.revmic.2017.03.001.
- ^ Shunxin Zhang; David M.S. Jowett; Christopher R. Barnes (2017). "Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands". Canadian Journal of Earth Sciences. 54 (9): 936–960. Bibcode:2017CaJES..54..936Z. doi:10.1139/cjes-2017-0023. hdl:1807/78295.
- ^ Yanlong Chen; Alexander Lukeneder (2017). "Late Triassic (Julian) conodont biostratigraphy of a transition from reefal limestones to deep-water environments on the Cimmerian terranes (Taurus Mountains, southern Turkey)". Papers in Palaeontology. 3 (3): 441–460. doi:10.1002/spp2.1082. S2CID 135222844.
- ^ a b Artem N. Plotitsyn; Andrey V. Zhuravlev (2017). "The new conodont species of Neopolygnathus and Polygnathus from the Tournaisian of the North Urals and Chernyshev Ridge" (PDF). Syktyvkar Palaeontological Miscellany. 8: 24–30.
- ^ Manuel Rigo; Michele Mazza; Viktor Karádi; Alda Nicora (2018). "New Upper Triassic Conodont Biozonation of the Tethyan Realm". In Lawrence H. Tanner (ed.). The Late Triassic World. Topics in Geobiology. Vol. 46. Springer. pp. 189–235. doi:10.1007/978-3-319-68009-5_6. hdl:11577/3258473. ISBN 978-3-319-68008-8.
- ^ a b M. A. Soboleva (2017). "New species of genus Palmatolepis (conodonts) from Frasnian deposits of the Subpolar and Polar Urals" (PDF). Syktyvkar Palaeontological Miscellany. 8: 40–50.
- ^ Gilbert Klapper; Thomas T. Uyeno; Derek K. Armstrong; Peter G. Telford (2017). "Palmatolepis spallettae, new name for a Frasnian conodont species". Journal of Paleontology. 91 (3): 578. Bibcode:2017JPal...91..578K. doi:10.1017/jpa.2017.21. S2CID 133637822.
- ^ N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2019). "Polygnathus sharyuensis nom. nov., a new replacement name for the Famennian (Upper Devonian) Polygnathus mawsonae Ovnatanova et al., 2017 (Conodonta)". Paleontological Journal. 53 (2): 214. doi:10.1134/S0031030119020096. S2CID 195299628.
- ^ A. N. Plotitsyn; A. V. Zhuravlev (2017). "A new species of the conodont genus Polygnathus from the Tournaisian of the northern Urals, Chernyshev Ridge and Pai-Khoi". Paleontological Journal. 51 (3): 304–307. doi:10.1134/S0031030117030091. S2CID 133888829.[permanent dead link ]
- ^ a b Z.T. Zhang; Y.D. Sun; X.L. Lai; M.M. Joachimski; P.B. Wignall (2017). "Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 486: 142–157. Bibcode:2017PPP...486..142Z. doi:10.1016/j.palaeo.2017.02.011.
- ^ Andrey V. Zhuravlev (2017). "A new species of the conodont genus Siphonodella Branson & Mehl (late Tournaisian)". Estonian Journal of Earth Sciences. 66 (4): 188–192. doi:10.3176/earth.2017.15.
- ^ Sandra I. Kaiser; Tomáš Kumpan; Vojtěch Cígler (2017). "New unornamented siphonodellids (Conodonta) of the lower Tournaisian from the Rhenish Massif and Moravian Karst (Germany and Czech Republic)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 286 (1): 1–33. doi:10.1127/njgpa/2017/0684.
- ^ Lina Wang; Paul B. Wignall; Yadong Sun; Chunbo Yan; Zaitian Zhang; Xulong Lai (2017). "New Permian-Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus" (PDF). Journal of Asian Earth Sciences. 146: 152–167. Bibcode:2017JAESc.146..152W. doi:10.1016/j.jseaes.2017.05.014.
- ^ Malcolm A. MacIver; Lars Schmitz; Ugurcan Mugan; Todd D. Murphey; Curtis D. Mobley (2017). "Massive increase in visual range preceded the origin of terrestrial vertebrates". Proceedings of the National Academy of Sciences of the United States of America. 114 (12): E2375–E2384. Bibcode:2017PNAS..114E2375M. doi:10.1073/pnas.1615563114. PMC 5373340. PMID 28270619.
- ^ Julia L. Molnar; Rui Diogo; John R. Hutchinson; Stephanie E. Pierce (2017). "Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition". Biological Reviews. 93 (2): 1077–1107. doi:10.1111/brv.12386. PMID 29125205. S2CID 4704712.
- ^ Melanie Tietje; Mark-Oliver Rödel (2017). "Contradicting habitat type-extinction risk relationships between living and fossil amphibians". Royal Society Open Science. 4 (5): 170051. Bibcode:2017RSOS....470051T. doi:10.1098/rsos.170051. PMC 5451811. PMID 28573010.
- ^ Marylène Danto; Florian Witzmann; Stephanie E. Pierce; Nadia B. Fröbisch (2017). "Intercentrum versus pleurocentrum growth in early tetrapods: A paleohistological approach". Journal of Morphology. 278 (9): 1262–1283. doi:10.1002/jmor.20709. PMID 28517044. S2CID 38390403.
- ^ Florian Witzmann; Ingmar Werneburg (2017). "The Palatal Interpterygoid Vacuities of Temnospondyls and the Implications for the Associated Eye- and Jaw Musculature". The Anatomical Record. 300 (7): 1240–1269. doi:10.1002/ar.23582. PMID 28220619. S2CID 4417795.
- ^ Ralf Werneburg (2017). "Earliest 'nursery ground' of temnospondyl amphibians in the Permian". Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen. 32: 3–42.
- ^ Bryan M. Gee; Yara Haridy; Robert R. Reisz (2017). "Histological characterization of denticulate palatal plates in an Early Permian dissorophoid". PeerJ. 5: e3727. doi:10.7717/peerj.3727. PMC 5571816. PMID 28848692.
- ^ Claudia A. Marsicano; Elizabeth Latimer; Bruce Rubidge; Roger M.H Smith (2017). "The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic". Zoological Journal of the Linnean Society. 181 (2): 357–384. doi:10.1093/zoolinnean/zlw032. hdl:11336/105150.
- ^ Karine Lohmann Azevedo; Cristina Silveira Vega; Marina Bento Soares (2017). "A new specimen of Australerpeton cosgriffi Barberena, 1998 (Stereospondyli: Rhinesuchidae) from the Middle/Upper Permian Rio do Rasto Formation, Paraná Basin, Brazil". Revista Brasileira de Paleontologia. 20 (3): 333–344. doi:10.4072/rbp.2017.3.05.
- ^ Thomas Arbez; Anissa Dahoumane; J.-Sébastien Steyer (2017). "Exceptional endocranium and middle ear of Stanocephalosaurus (Temnospondyli: Capitosauria) from the Triassic of Algeria revealed by micro-CT scan, with new functional interpretations of the hearing system" (PDF). Zoological Journal of the Linnean Society. 180 (4): 910–929. doi:10.1093/zoolinnean/zlw007.
- ^ Josep Fortuny; Jordi Marcé-Nogué; Dorota Konietzko-Meier (2017). "Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach". Journal of Anatomy. 230 (6): 752–765. doi:10.1111/joa.12605. PMC 5442151. PMID 28369819.
- ^ Bryan M. Gee; William G. Parker; Adam D. Marsh (2017). "Microanatomy and paleohistology of the intercentra of North American metoposaurids from the Upper Triassic of Petrified Forest National Park (Arizona, USA) with implications for the taxonomy and ontogeny of the group". PeerJ. 5: e3183. doi:10.7717/peerj.3183. PMC 5398283. PMID 28439462.
- ^ Bryan M. Gee; William G. Parker (2017). "A juvenile Koskinonodon perfectus (Temnospondyli, Metoposauridae) from the Upper Triassic of Arizona and its implications for the taxonomy of North American metoposaurids". Journal of Paleontology. 91 (5): 1047–1059. Bibcode:2017JPal...91.1047G. doi:10.1017/jpa.2017.18. S2CID 134611838.
- ^ Florian Witzmann; Elizabeth Brainerd (2017). "Modeling the physiology of the aquatic temnospondyl Archegosaurus decheni from the early Permian of Germany". Fossil Record. 20 (2): 105–127. doi:10.5194/fr-20-105-2017.
- ^ Pavel P. Skutschas; Elizaveta A. Boitsova (2017). "Histology of sculptured cranial dermal bones of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan". Historical Biology: An International Journal of Paleobiology. 29 (3): 423–429. doi:10.1080/08912963.2016.1171859. S2CID 87609117.
- ^ Jérémy Tissier; Jean-Claude Rage; Michel Laurin (2017). "Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander". PeerJ. 5: e3861. doi:10.7717/peerj.3861. PMC 5629955. PMID 29018606.
- ^ A. Kristopher Lappin; Sean C. Wilcox; David J. Moriarty; Stephanie A. R. Stoeppler; Susan E. Evans; Marc E. H. Jones (2017). "Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs". Scientific Reports. 7 (1): Article number 11963. Bibcode:2017NatSR...711963L. doi:10.1038/s41598-017-11968-6. PMC 5607344. PMID 28931936.
- ^ Massimo Delfino (2017). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. 140: Article 102353. doi:10.1016/j.jhevol.2017.06.008. PMID 28712471. S2CID 22517710.
- ^ Jason D. Pardo; Matt Szostakiwskyj; Per E. Ahlberg; Jason S. Anderson (2017). "Hidden morphological diversity among early tetrapods". Nature. 546 (7660): 642–645. Bibcode:2017Natur.546..642P. doi:10.1038/nature22966. hdl:1880/113382. PMID 28636600. S2CID 2478132.
- ^ Josep Fortuny; Stéphanie Gastou; François Escuillié; Lovasoa Ranivoharimanana; J.-Sébastien Steyer (2017). "A new extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and palaeobiogeographical implications for trematosaurids". Journal of Systematic Palaeontology. 16 (8): 675–688. doi:10.1080/14772019.2017.1335805. S2CID 134191156.
- ^ Jason D. Pardo; Bryan J. Small; Adam K. Huttenlocker (2017). "Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia". Proceedings of the National Academy of Sciences of the United States of America. 114 (27): E5389–E5395. Bibcode:2017PNAS..114E5389P. doi:10.1073/pnas.1706752114. PMC 5502650. PMID 28630337.
- ^ Marco Marzola; Octávio Mateus; Neil H. Shubin; Lars B. Clemmensen (2017). "Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland)". Journal of Vertebrate Paleontology. 37 (2): e1303501. Bibcode:2017JVPal..37E3501M. doi:10.1080/02724634.2017.1303501. hdl:10362/33003. S2CID 134255506.
- ^ Estevan Eltink; Átila A. Stock Da-Rosa; Sérgio Dias-da-Silva (2017). "A capitosauroid from the Lower Triassic of South America (Sanga do Cabral Supersequence:Paraná Basin), its phylogenetic relationships and biostratigraphic implications". Historical Biology. 29 (7): 863–874. doi:10.1080/08912963.2016.1255736. S2CID 132509118.
- ^ Laura Nicoli (2017). "New clues on anuran evolution: the oldest record of an extant hyloid clade in the Oligocene of Patagonia". Historical Biology: An International Journal of Paleobiology. 29 (8): 1031–1044. doi:10.1080/08912963.2017.1282475. hdl:11336/49287. S2CID 90532522.
- ^ Ke-Qin Gao; Jianye Chen (2017). "A new crown-group frog (Amphibia: Anura) from the Early Cretaceous of northeastern Inner Mongolia, China". American Museum Novitates (3876): 1–39. doi:10.1206/3876.1. hdl:2246/6702. S2CID 44121192.
- ^ Yuan Wang; Zbyněk Roček; Liping Dong (2017). "A new pelobatoid frog from the lower Eocene of southern China". Palaeobiodiversity and Palaeoenvironments. 98 (2): 225–242. doi:10.1007/s12549-017-0304-1. S2CID 89974467.
- ^ Timothy R. Smithson; Michael A. E. Browne; Sarah J Davies; John E. A. Marshall; David Millward; Stig A. Walsh; Jennifer A. Clack (2017). "A new Mississippian tetrapod from Fife, Scotland, and its environmental context". Papers in Palaeontology. 3 (4): 547–557. doi:10.1002/spp2.1086. hdl:2381/40472.
- ^ Shan Jiang; Shu-an Ji; Jinyou Mo (2017). "First record of bystrowianid chroniosuchians (Amphibia: Anthracosauromorpha) from the Middle Permian of China". Acta Geologica Sinica (English Edition). 91 (5): 1523–1529. doi:10.1111/1755-6724.13397. S2CID 134350720.
- ^ Neil Brocklehurst; Jörg Fröbisch (2017). "A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications". Fossil Record. 20 (1): 87–93. doi:10.5194/fr-20-87-2017.
- ^ Marco Romano; Ausonio Ronchi; Simone Maganuco; Umberto Nicosia (2017). "New material of Alierasaurus ronchii (Synapsida, Caseidae) from the Permian of Sardinia (Italy), and its phylogenetic affinities". Palaeontologia Electronica. 20 (2): Article number 20.2.26A. doi:10.26879/684. hdl:11573/1045550.
- ^ Christen D. Shelton; Paul Martin Sander (2017). "Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage". Comptes Rendus Palevol. 16 (4): 397–424. Bibcode:2017CRPal..16..397S. doi:10.1016/j.crpv.2017.02.002.
- ^ Neil Brocklehurst; Kirstin S. Brink (2017). "Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous". FACETS. 2: 68–84. doi:10.1139/facets-2016-0046.
- ^ Kévin Rey; Romain Amiot; François Fourel; Fernando Abdala; Frédéric Fluteau; Nour-Eddine Jalil; Jun Liu; Bruce S. Rubidge; Roger M.H. Smith; J. Sébastien Steyer; Pia A. Viglietti; Xu Wang; Christophe Lécuyer (2017). "Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades". eLife. 6: e28589. doi:10.7554/eLife.28589. PMC 5515572. PMID 28716184.
- ^ J. Benoit; V. Fernandez; P.R. Manger; B.S. Rubidge (2017). "Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological diversity at the deep evolutionary root of mammals". Brain, Behavior and Evolution. 90 (4): 311–333. doi:10.1159/000481525. PMID 29130981. S2CID 12062696.
- ^ Julien Benoit; Paul R. Manger; Vincent Fernandez; Bruce S. Rubidge (2017). "The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida". Palaeontologia Africana. 52: 58–77. hdl:10539/23023.
- ^ Julien Benoit; Paul R. Manger; Luke Norton; Vincent Fernandez; Bruce S. Rubidge (2017). "Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia)". PeerJ. 5: e3496. doi:10.7717/peerj.3496. PMC 5554600. PMID 28828230.
- ^ Chloe Olivier; Alexandra Houssaye; Nour-Eddine Jalil; Jorge Cubo (2017). "First palaeohistological inference of resting metabolic rate in an extinct synapsid, Moghreberia nmachouensis (Therapsida: Anomodontia)". Biological Journal of the Linnean Society. 121 (2): 409–419. doi:10.1093/biolinnean/blw044.
- ^ Michael Laaß; Burkhard Schillinger; Anders Kaestner (2017). "What did the "Unossified zone" of the non-mammalian therapsid braincase house?". Journal of Morphology. 278 (8): 1020–1032. doi:10.1002/jmor.20583. PMID 28621458. S2CID 23767779.
- ^ Kenneth D. Angielczyk; Christian F. Kammerer (2017). "The cranial morphology, phylogenetic position and biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen (Therapsida, Anomodontia)". Papers in Palaeontology. 3 (4): 513–545. doi:10.1002/spp2.1087.
- ^ Jennifer Botha-Brink (2017). "Burrowing in Lystrosaurus: preadaptation to a postextinction environment?". Journal of Vertebrate Paleontology. 37 (5): e1365080. Bibcode:2017JVPal..37E5080B. doi:10.1080/02724634.2017.1365080. S2CID 89742527.
- ^ Michael Laaß; Anders Kaestner (2017). "Evidence for convergent evolution of a neocortex-like structure in a late Permian therapsid". Journal of Morphology. 278 (8): 1033–1057. doi:10.1002/jmor.20712. PMID 28621462. S2CID 25032751.
- ^ Megan R. Whitney; Larry Mose; Christian A. Sidor (2017). "Odontoma in a 255-million-year-old mammalian forebear". JAMA Oncology. 3 (7): 998–1000. doi:10.1001/jamaoncol.2016.5417. PMC 5824274. PMID 27930769.
- ^ Ricardo Araújo; Vincent Fernandez; Michael J. Polcyn; Jörg Fröbisch; Rui M.S. Martins (2017). "Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy". PeerJ. 5: e3119. doi:10.7717/peerj.3119. PMC 5390774. PMID 28413721.
- ^ Christian F. Kammerer (2017). "Anatomy and relationships of the South African gorgonopsian Arctops (Therapsida, Theriodontia)". Papers in Palaeontology. 3 (4): 583–611. doi:10.1002/spp2.1094. S2CID 90784117.
- ^ Christian F. Kammerer (2017). "Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species". Palaeontologia Africana. 52: 85–88. hdl:10539/23480.
- ^ Julien Benoit; Luke A. Norton; Paul R. Manger; Bruce S. Rubidge (2017). "Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques". PLOS ONE. 12 (2): e0172047. Bibcode:2017PLoSO..1272047B. doi:10.1371/journal.pone.0172047. PMC 5302418. PMID 28187210.
- ^ Michael W. Maisch (2017). "Re-assessment of Silphoictidoides ruhuhuensis von Huene, 1950 (Therapsida, Therocephalia) from the Late Permian of Tanzania: one of the most basal baurioids known". Palaeodiversity. 10 (1): 25–39. doi:10.18476/pale.v10.a3. S2CID 90077728.
- ^ Julien Benoit; Sandra C. Jasinoski; Vincent Fernandez; Fernando Abdala (2017). "The mystery of a missing bone: revealing the orbitosphenoid in basal Epicynodontia (Cynodontia, Therapsida) through computed tomography". The Science of Nature. 104 (7–8): Article 66. Bibcode:2017SciNa.104...66B. doi:10.1007/s00114-017-1487-z. PMID 28721557. S2CID 23688904.
- ^ A. W. Crompton; T. Owerkowicz; B.-A. S. Bhullar; C. Musinsky (2017). "Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy". Journal of Vertebrate Paleontology. 37 (1): e1269116. Bibcode:2017JVPal..37E9116C. doi:10.1080/02724634.2017.1269116. S2CID 39300694.
- ^ Sandra C. Jasinoski; Fernando Abdala (2017). "Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus". PeerJ. 5: e2875. doi:10.7717/peerj.2875. PMC 5228509. PMID 28097072.
- ^ Sandra C. Jasinoski; Fernando Abdala (2017). "Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps". The Anatomical Record. 300 (2): 353–381. doi:10.1002/ar.23473. hdl:11336/66934. PMID 27615281. S2CID 3629704.
- ^ Jun Liu; Vincent P. Schneider; Paul E. Olsen (2017). "The postcranial skeleton of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA and the comparison with other traversodontids". PeerJ. 5: e3521. doi:10.7717/peerj.3521. PMC 5601084. PMID 28929007.
- ^ Tai Kubo; Eisuke Yamada; Mugino O. Kubo (2017). "Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia) inferred from its dental microwear". PLOS ONE. 12 (11): e0188023. Bibcode:2017PLoSO..1288023K. doi:10.1371/journal.pone.0188023. PMC 5706674. PMID 29186178.
- ^ Agustín G. Martinelli; Marina Bento Soares; Téo Veiga De Oliveira; Pablo G. Rodrigues; Cesar L. Schultz (2017). "The Triassic eucynodont Candelariodon barberenai revisited and the early diversity of stem prozostrodontians". Acta Palaeontologica Polonica. 62 (3): 527–542. doi:10.4202/app.00344.2017.
- ^ Leandro C. Gaetano; Fernando Abdala; Romala Govender (2017). "The postcranial skeleton of the Lower Jurassic Tritylodon longaevus from southern Africa". Ameghiniana. 54 (1): 1–35. doi:10.5710/AMGH.11.09.2016.3011. hdl:11336/67040. S2CID 131866292.
- ^ Elsa Panciroli; Stig Walsh; Nicholas C. Fraser; Stephen L. Brusatte; Ian Corfe (2017). "A reassessment of the postcanine dentition and systematics of the tritylodontid Stereognathus (Cynodontia, Tritylodontidae, Mammaliamorpha), from the Middle Jurassic of the United Kingdom". Journal of Vertebrate Paleontology. 37 (5): e1351448. Bibcode:2017JVPal..37E1448P. doi:10.1080/02724634.2017.1351448. hdl:10138/230155. S2CID 90100319.
- ^ E.M. Bordy; L. Sciscio; F. Abdala; B.W. McPhee; J.N. Choiniere (2017). "First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa)". Palaeogeography, Palaeoclimatology, Palaeoecology. 468: 362–372. Bibcode:2017PPP...468..362B. doi:10.1016/j.palaeo.2016.12.024. hdl:11336/91165.
- ^ Stephan Lautenschlager; Pamela Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2017). "Morphological evolution of the mammalian jaw adductor complex" (PDF). Biological Reviews. 92 (4): 1910–1940. doi:10.1111/brv.12314. PMC 6849872. PMID 27878942.
- ^ Agustín G. Martinelli; Estevan Eltink; Átila A. S. Da-Rosa; Max C. Langer (2017). "A new cynodont from the Santa Maria formation, south Brazil, improves Late Triassic probainognathian diversity". Papers in Palaeontology. 3 (3): 401–423. doi:10.1002/spp2.1081. S2CID 134049061.
- ^ Agustín G. Martinelli; Christian F. Kammerer; Tomaz P. Melo; Voltaire D. Paes Neto; Ana Maria Ribeiro; Átila A. S. Da-Rosa; Cesar L. Schultz; Marina Bento Soares (2017). "The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance". PLOS ONE. 12 (6): e0177948. Bibcode:2017PLoSO..1277948M. doi:10.1371/journal.pone.0177948. PMC 5470689. PMID 28614355.
- ^ Christian F. Kammerer; Roger M.H. Smith (2017). "An early geikiid dicynodont from the Tropidostoma Assemblage Zone (late Permian) of South Africa". PeerJ. 5: e2913. doi:10.7717/peerj.2913. PMC 5289114. PMID 28168104.
- ^ Jun Liu; Fernando Abdala (2017). "Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China". Vertebrata PalAsiatica. 55 (1): 24–40. doi:10.19615/j.cnki.1000-3118.2017.01.002.
- ^ a b Adam K. Huttenlocker; Roger M.H. Smith (2017). "New whaitsioids (Therapsida: Therocephalia) from the Teekloof Formation of South Africa and therocephalian diversity during the end-Guadalupian extinction". PeerJ. 5: e3868. doi:10.7717/peerj.3868. PMC 5632541. PMID 29018609.
- ^ a b Paúl M. Velazco; Alexandra J. Buczek; Michael J. Novacek (2017). "Two new tritylodontids (Synapsida, Cynodontia, Mammaliamorpha) from the Upper Jurassic, southwestern Mongolia". American Museum Novitates (3874): 1–35. doi:10.1206/3874.1. hdl:2246/6698. S2CID 58895088.
- ^ A. A. Kurkin (2017). "A new Galeopid (Anomodontia, Galeopidae) from the Permian of Eastern Europe". Paleontological Journal. 51 (3): 308–312. doi:10.1134/S0031030117030042. S2CID 134828114.
- ^ Tomaz P. Melo; Agustín G. Martinelli; Marina B. Soares (2017). "A new gomphodont cynodont (Traversodontidae) from the Middle–Late Triassic Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence, Brazil". Palaeontology. 60 (4): 571–582. Bibcode:2017Palgy..60..571M. doi:10.1111/pala.12302. S2CID 135139694.
- ^ Jun Liu; Fernando Abdala (2017). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 1. Shiguaignathus wangi gen. et sp. nov., the first akidnognathid therocephalian from China". PeerJ. 5: e4150. doi:10.7717/peerj.4150. PMC 5723136. PMID 29230374.
- ^ M. Zhu; A. Yu. Zhuravlev; R.A. Wood; F. Zhao; S.S. Sukhov (2017). "A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform" (PDF). Geology. 45 (5): 459–462. Bibcode:2017Geo....45..459Z. doi:10.1130/G38865.1. hdl:20.500.11820/319d761a-cd15-4e81-9038-bde69d45046b. S2CID 132968299.
- ^ John R. Paterson; James G. Gehling; Mary L. Droser; Russell D. C. Bicknell (2017). "Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia". Scientific Reports. 7: Article number 45539. Bibcode:2017NatSR...745539P. doi:10.1038/srep45539. PMC 5371987. PMID 28358056.
- ^ Simon A. F. Darroch; Imran A. Rahman; Brandt Gibson; Rachel A. Racicot; Marc Laflamme (2017). "Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina". Biology Letters. 13 (5): 20170033. doi:10.1098/rsbl.2017.0033. PMC 5454237. PMID 28515329.
- ^ Lucas Veríssimo Warren; Fernanda Quaglio; Marcello Guimarães Simões; Claudio Gaucher; Claudio Riccomini; Daniel G. Poiré; Bernardo Tavares Freitas; Paulo C. Boggiani; Alcides Nobrega Sial (2017). "Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran". Precambrian Research. 298: 79–87. Bibcode:2017PreR..298...79W. doi:10.1016/j.precamres.2017.05.003. hdl:11449/163140.
- ^ Scott D. Evans; Mary L. Droser; James G. Gehling (2017). "Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata". PLOS ONE. 12 (5): e0176874. Bibcode:2017PLoSO..1276874E. doi:10.1371/journal.pone.0176874. PMC 5435172. PMID 28520741.
- ^ Renee S. Hoekzema; Martin D. Brasier; Frances S. Dunn; Alexander G. Liu (2017). "Quantitative study of developmental biology confirms Dickinsonia as a metazoan". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20171348. doi:10.1098/rspb.2017.1348. PMC 5597836. PMID 28904140.
- ^ M.A. Zakrevskaya; A.Yu. Ivantsov (2017). "Dickinsonia costata — the first evidence of neoteny in Ediacaran organisms". Invertebrate Zoology. 14 (1): 92–98. doi:10.15298/invertzool.14.1.13.
- ^ Bruce S. Lieberman; Richard Kurkewicz; Heather Shinogle; Julien Kimmig; Breandán Anraoi MacGabhann (2017). "Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA". PeerJ. 5: e3312. doi:10.7717/peerj.3312. PMC 5463991. PMID 28603667.
- ^ Bruno Becker-Kerber; Mírian Liza Alves Forancelli Pacheco; Isaac Daniel Rudnitzki; Douglas Galante; Fabio Rodrigues; Juliana de Moraes Leme (2017). "Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization". Scientific Reports. 7 (1): Article number 5482. Bibcode:2017NatSR...7.5482B. doi:10.1038/s41598-017-05753-8. PMC 5511220. PMID 28710440.
- ^ Luke A. Parry; Paulo C. Boggiani; Daniel J. Condon; Russell J. Garwood; Juliana de M. Leme; Duncan McIlroy; Martin D. Brasier; Ricardo Trindade; Ginaldo A. C. Campanha; Mírian L. A. F. Pacheco; Cleber Q. C. Diniz; Alexander G. Liu (2017). "Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil" (PDF). Nature Ecology & Evolution. 1 (10): 1455–1464. doi:10.1038/s41559-017-0301-9. PMID 29185521. S2CID 40497407.
- ^ Joseph P. Botting; Lucy A. Muir; Yuandong Zhang; Xuan Ma; Junye Ma; Longwu Wang; Jianfang Zhang; Yanyan Song; Xiang Fang (2017). "Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass Extinction". Current Biology. 27 (4): 556–562. doi:10.1016/j.cub.2016.12.061. PMID 28190724.
- ^ Arnaud Brayard; L. J. Krumenacker; Joseph P. Botting; James F. Jenks; Kevin G. Bylund; Emmanuel Fara; Emmanuelle Vennin; Nicolas Olivier; Nicolas Goudemand; Thomas Saucède; Sylvain Charbonnier; Carlo Romano; Larisa Doguzhaeva; Ben Thuy; Michael Hautmann; Daniel A. Stephen; Christophe Thomazo; Gilles Escarguel (2017). "Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna". Science Advances. 3 (2): e1602159. Bibcode:2017SciA....3E2159B. doi:10.1126/sciadv.1602159. PMC 5310825. PMID 28246643.
- ^ Fletcher J. Young; Jakob Vinther (2017). "Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni". Palaeontology. 60 (1): 27–54. Bibcode:2017Palgy..60...27Y. doi:10.1111/pala.12269. hdl:1983/92180ef0-2205-4c65-9a70-90d59cfea2f4. S2CID 55477207.
- ^ a b Han Zeng; Fangchen Zhao; Zongjun Yin; Maoyan Zhu (2017). "Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China". Journal of Systematic Palaeontology. 16 (1): 1–37. doi:10.1080/14772019.2016.1263685. S2CID 133549817.
- ^ Stephen Pates; Allison C. Daley; Javier Ortega-Hernández (2017). "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris". Acta Palaeontologica Polonica. 62 (3): 619–625. doi:10.4202/app.00361.2017.
- ^ a b c Stephen Pates; Allison C. Daley (2017). "Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada". Papers in Palaeontology. 3 (3): 461–470. doi:10.1002/spp2.1084. S2CID 135026011.
- ^ Peiyun Cong; Allison C. Daley; Gregory D. Edgecombe; Xianguang Hou (2017). "The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata". BMC Evolutionary Biology. 17 (1): 208. doi:10.1186/s12862-017-1049-1. PMC 5577670. PMID 28854872.
- ^ Joseph Moysiuk; Martin R. Smith; Jean-Bernard Caron (2017). "Hyoliths are Palaeozoic lophophorates" (PDF). Nature. 541 (7637): 394–397. Bibcode:2017Natur.541..394M. doi:10.1038/nature20804. PMID 28077871. S2CID 4409157.
- ^ Lauren Sallan; Sam Giles; Robert S. Sansom; John T. Clarke; Zerina Johanson; Ivan J. Sansom; Philippe Janvier (2017). "The 'Tully Monster' is not a vertebrate: characters, convergence and taphonomy in Palaeozoic problematic animals" (PDF). Palaeontology. 60 (2): 149–157. Bibcode:2017Palgy..60..149S. doi:10.1111/pala.12282. S2CID 90132820.
- ^ JinShu Li; JianNi Liu; Qiang Ou (2017). "New observations on Vetulicola longbaoshanensis from the Lower Cambrian Guanshan Biota (Series 2, Stage 4), South China". Science China Earth Sciences. 60 (10): 1795–1804. Bibcode:2017ScChD..60.1795L. doi:10.1007/s11430-017-9088-y. S2CID 135037211.
- ^ George Poinar Jr.; Kenneth A. Philbrick; Martin J. Cohn; Russell T. Turner; Urszula T. Iwaniec; Joerg Wunderlich (2017). "X-ray microcomputed tomography reveals putative trematode metacercaria in a 100 million year-old lizard (Squamata: Agamidae)". Cretaceous Research. 80: 27–30. Bibcode:2017CrRes..80...27P. doi:10.1016/j.cretres.2017.07.017.
- ^ a b Ya-Sheng Wu (2017). "A latest Permian non-reef calcisponge fauna from Laibin, Guangxi, southern China and its significance". Journal of Palaeogeography. 6 (1): 60–68. Bibcode:2017JPalG...6...60W. doi:10.1016/j.jop.2016.10.002.
- ^ a b c Michael J. Melchin; Alfred C. Lenz; Anna Kozłowska (2017). "Retiolitine graptolites from the Aeronian and lower Telychian (Llandovery, Silurian) of Arctic Canada". Journal of Paleontology. 91 (1): 116–145. Bibcode:2017JPal...91..116M. doi:10.1017/jpa.2016.107. S2CID 131854052.
- ^ Gerd Geyer (2017). "A new enigmatic hyolith from the Cambrian of West Gondwana and its bearing on the systematics of hyoliths". Papers in Palaeontology. 4 (1): 85–100. doi:10.1002/spp2.1098. S2CID 90158754.
- ^ Hao Yun; Xingliang Zhang; Luoyang Li (2017). "Chancelloriid Allonnia erjiensis sp. nov. from the Chengjiang Lagerstätte of South China". Journal of Systematic Palaeontology. 16 (5): 435–444. doi:10.1080/14772019.2017.1311380. S2CID 90908751.
- ^ Olle Hints; Petra Tonarová; Mats E. Eriksson; Claudia V. Rubinstein; G. Susana de la Puente (2017). "Early Middle Ordovician scolecodonts from north-western Argentina and the emergence of labidognath polychaete jaw apparatuses". Palaeontology. 60 (4): 583–593. Bibcode:2017Palgy..60..583H. doi:10.1111/pala.12303. hdl:11336/96614. S2CID 90358332.
- ^ Xinglian Yang; Yuanlong Zhao; Loren E. Babcock; Jin Peng (2017). "A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China". Geological Magazine. 154 (6): 1334–1343. Bibcode:2017GeoM..154.1334Y. doi:10.1017/S0016756816001229. S2CID 133251786.
- ^ X.-L. Yang; Y.-L. Zhao; L. E. Babcock; J. Peng (2017). "Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota (Cambrian Stage 5), Guizhou, South China". Scientific Reports. 7: Article number 42945. Bibcode:2017NatSR...742945Y. doi:10.1038/srep42945. PMC 5318851. PMID 28220860.
- ^ Degan Shu; Simon Conway Morris; Jian Han; Jennifer F. Hoyal Cuthill; Zhifei Zhang; Meirong Cheng; Hai Huang (2017). "Multi-jawed chaetognaths from the Chengjiang Lagerstätte (Cambrian, Series 2, Stage 3) of Yunnan, China". Palaeontology. 60 (6): 763–772. Bibcode:2017Palgy..60..763S. doi:10.1111/pala.12325.
- ^ Tomáš Kočí; Martina Kočová Veselská; William A. Newman; John S. Buckeridge; Jan Sklenář (2017). "Archaeochionelasmus nekvasilovae gen. et sp. nov. (Cirripedia, Balanomorpha, Chionelasmatoidea) from the Bohemian Cretaceous Basin (Czech Republic): the first bona fide Cretaceous neobalanoform". Zootaxa. 4294 (2): 181–196. doi:10.11646/zootaxa.4294.2.3.
- ^ Andy S. Gale; Peter W. Skelton (2018). "The Cretaceous acorn barnacle Archaeochionelasmus nekvasilovae Kočí, Newman and Buckeridge, 2017 (Cirripedia, Neobalanomorpha) is a fragmentary rudist (Bivalvia, Mollusca)" (PDF). Cretaceous Research. 91: 251–256. Bibcode:2018CrRes..91..251G. doi:10.1016/j.cretres.2018.05.017. S2CID 133677479.
- ^ Martin Valent; Oldřich Fatka; Ladislav Marek (2017). "Biskolites iactans gen. et sp. nov. from the Cambrian of the Czech Republic (Hyolitha, Skryje-Týřovice Basin)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 227–233. doi:10.1127/njgpa/2017/0679.
- ^ Derek E.G. Briggs; Jean-Bernard Caron (2017). "A large Cambrian chaetognath with supernumerary grasping spines". Current Biology. 27 (16): 2536–2543.e1. doi:10.1016/j.cub.2017.07.003. PMID 28781052. S2CID 13291198.
- ^ a b c Yaoping Cai; Iván Cortijo; James D. Schiffbauer; Hong Hua (2017). "Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China". Precambrian Research. 298: 146–156. Bibcode:2017PreR..298..146C. doi:10.1016/j.precamres.2017.05.016.
- ^ Olev Vinn; Anna Madison (2017). "Cornulitids from the Upper Ordovician of northwestern Russia". Carnets de Géologie. 17 (12): 235–241. doi:10.4267/2042/64289.
- ^ Joseph P. Botting; Yuandong Zhang; Lucy A. Muir (2017). "Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution". Scientific Reports. 7 (1): Article number 5286. Bibcode:2017NatSR...7.5286B. doi:10.1038/s41598-017-05604-6. PMC 5509731. PMID 28706211.
- ^ a b c Ewa Świerczewska-Gładysz (2017). "Early Campanian Corallistidae (lithistid Demospongiae) from the Miechów and Mogilno-Łódź synclinoria, southern and central Poland". Cretaceous Research. 71: 40–62. Bibcode:2017CrRes..71...40S. doi:10.1016/j.cretres.2016.11.007.
- ^ George O. Poinar (2017). "A mermithid nematode, Cretacimermis aphidophilus sp. n. (Nematoda: Mermithidae), parasitising an aphid (Hemiptera: Burmitaphididae) in Myanmar amber: a 100 million year association". Nematology. 19 (5): 509–513. doi:10.1163/15685411-00003063.
- ^ Thomas H. P. Harvey; Nicholas J. Butterfield (2017). "Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos" (PDF). Nature Ecology & Evolution. 1 (3): Article number 0022. doi:10.1038/s41559-016-0022. hdl:2381/38658. PMID 28812727. S2CID 22874770. Archived from the original (PDF) on 2021-11-29. Retrieved 2019-08-16.
- ^ Jian Han; Yaoping Cai; James D. Schiffbauer; Hong Hua; Xing Wang; Xiaoguang Yang; Kentaro Uesugi; Tsuyoshi Komiya; Jie Sun (2017). "A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China". Geological Magazine. 154 (6): 1294–1305. Bibcode:2017GeoM..154.1294H. doi:10.1017/S0016756816001187. S2CID 133366862.
- ^ a b Daniel Ungureanu; Fayez Ahmad; Sherif Farouk (2017). "A Callovian (Middle Jurassic) poriferan fauna from northwestern Jordan: taxonomy, palaeoecology and palaeobiogeography". Historical Biology: An International Journal of Paleobiology. 30 (5): 577–592. doi:10.1080/08912963.2017.1304935. S2CID 90874394.
- ^ a b c d Rossana Sanfilippo; Antonietta Rosso; Agatino Reitano; Gianni Insacco (2017). "First record of sabellid and serpulid polychaetes from the Permian of Sicily". Acta Palaeontologica Polonica. 62 (1): 25–38. doi:10.4202/app.00288.2016.
- ^ Radek Vodrážka (2017). "Guettardiscyphia zitti sp. n. - a remarkable hexactinellid sponge from the Lower Turonian of the Bohemian Cretaceous Basin". Geological Quarterly. 61 (3): 632–640. doi:10.7306/gq.1373.
- ^ Peiyun Cong; Xiaoya Ma; Mark Williams; David J. Siveter; Derek J. Siveter; Sarah E. Gabbott; Dayou Zhai; Tomasz Goral; Gregory D. Edgecombe; Xianguang Hou (2017). "Host-specific infestation in early Cambrian worms". Nature Ecology & Evolution. 1 (10): 1465–1469. doi:10.1038/s41559-017-0278-4. hdl:2381/41401. PMID 29185506. S2CID 5564867.
- ^ A.Yu. Ivantsov (2017). "The most probable Eumetazoa among late Precambrian macrofossils". Invertebrate Zoology. 14 (2): 127–133. doi:10.15298/invertzool.14.2.05.
- ^ Juwan Jeon; Jino Park; Suk-Joo Choh; Dong-Jin Lee (2017). "Early labechiid stromatoporoids of the Yeongheung Formation (Middle Ordovician), Yeongwol Group, mideastern Korean Peninsula: Part II. Systematic paleontology and paleogeographic implications". Geosciences Journal. 21 (3): 331–340. Bibcode:2017GescJ..21..331J. doi:10.1007/s12303-016-0055-4. S2CID 133559557.
- ^ Benjamin Gügel; Kenneth De Baets; Iwan Jerjen; Philipp Schuetz; Christian Klug (2017). "A new subdisarticulated machaeridian from the Middle Devonian of China: Insights into taphonomy and taxonomy using X-ray microtomography and 3D-analysis". Acta Palaeontologica Polonica. 62 (2): 237–247. doi:10.4202/app.00346.2017. hdl:20.500.11850/191018.
- ^ Haijing Sun; Loren E. Babcock; Jin Peng; Jessica M. Kastigar (2017). "Systematics and palaeobiology of some Cambrian hyoliths from Guizhou, China, and Nevada, USA". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 79–100. doi:10.1080/03115518.2016.1184426. S2CID 131837609.
- ^ a b Thomas Wotte; Frederick A. Sundberg (2017). "Small shelly fossils from the Montezuman–Delamaran of the Great Basin in Nevada and California". Journal of Paleontology. 91 (5): 883–901. Bibcode:2017JPal...91..883W. doi:10.1017/jpa.2017.8. S2CID 135177034.
- ^ Fangchen Zhao; Martin R. Smith; Zongjun Yin; Han Zeng; Guoxiang Li; Maoyan Zhu (2017). "Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution". Scientific Reports. 7 (1): Article number 16232. Bibcode:2017NatSR...716232Z. doi:10.1038/s41598-017-16304-6. PMC 5701144. PMID 29176685.
- ^ Jean-Bernard Caron; Cédric Aria (2017). "Cambrian suspension-feeding lobopodians and the early radiation of panarthropods". BMC Evolutionary Biology. 17 (1): 29. doi:10.1186/s12862-016-0858-y. PMC 5282736. PMID 28137244.
- ^ a b c d Alfons H.M. VandenBerg (2017). "Revision of zonal and related graptolites of the topmost Lancefieldian and Bendigonian (early Floian) graptolite sequence in Victoria, Australia". Proceedings of the Royal Society of Victoria. 129 (2): 39–74. doi:10.1071/rs17007.
- ^ Y. Candela; W. R. B. Crighton (2017). "Addenda to the record of machaeridian shell plates in the Wether Law Linn Formation (Late Llandovery), Pentland Hills, Scotland". Scottish Journal of Geology. 53 (1): 35–39. Bibcode:2017ScJG...53...35C. doi:10.1144/sjg2016-006. S2CID 132750137.
- ^ a b Tomáš Kočí; Manfred Jäger; Nicolas Morel (2017). "Sabellid and serpulid worm tubes (Polychaeta, Canalipalpata, Sabellida) from the historical stratotype of the Cenomanian (Late Cretaceous; Le Mans region, Sarthe, France)". Annales de Paléontologie. 103 (1): 45–80. Bibcode:2017AnPal.103...45K. doi:10.1016/j.annpal.2016.11.004.
- ^ a b Matilde Sylvia Beresi; Joseph P. Botting; Juan J. Palafox; Blanca E. Buitrón Sánchez (2017). "New reticulosan sponges from the middle Cambrian of Sonora, Mexico". Acta Palaeontologica Polonica. 62 (4): 691–703. doi:10.4202/app.00378.2017. hdl:11336/64224.
- ^ Jian Han; Simon Conway Morris; Qiang Ou; Degan Shu; Hai Huang (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. Bibcode:2017Natur.542..228H. doi:10.1038/nature21072. PMID 28135722. S2CID 353780.
- ^ Yunhuan Liu; Emily Carlisle; Huaqiao Zhang; Ben Yang; Michael Steiner; Tiequan Shao; Baichuan Duan; Federica Marone; Shuhai Xiao; Philip C. J. Donoghue (2022). "Saccorhytus is an early ecdysozoan and not the earliest deuterostome". Nature. 609 (7927): 541–546. Bibcode:2022Natur.609..541L. doi:10.1038/s41586-022-05107-z. hdl:1983/454e7bec-4cd4-4121-933e-abeab69e96c1. PMID 35978194. S2CID 251646316.
- ^ a b John S. Peel (2017). "First records from Laurentia of some middle Cambrian (Series 3) sponge spicules". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 306–314. doi:10.1080/03115518.2017.1282983. S2CID 132042906.
- ^ John S. Peel (2017). "Feeding behaviour of a new worm (Priapulida) from the Sirius Passet Lagerstätte (Cambrian Series 2, Stage 3) of North Greenland (Laurentia)". Palaeontology. 60 (6): 795–805. Bibcode:2017Palgy..60..795P. doi:10.1111/pala.12316. S2CID 134180194.
- ^ Julien Kimmig; Luke C. Strotz; Bruce S. Lieberman (2017). "The stalked filter feeder Siphusauctum lloydguntheri n. sp. from the middle Cambrian (Series 3, Stage 5) Spence Shale of Utah: its biological affinities and taphonomy". Journal of Paleontology. 91 (5): 902–910. Bibcode:2017JPal...91..902K. doi:10.1017/jpa.2017.57. S2CID 135082143.
- ^ http://zoobank.org/References/D0590390-A85A-493A-8529-B2DF64D91169 [dead link ]
- ^ Cong, Pei-Yun; Edgecombe, Gregory D.; Daley, Allison C.; Guo, Jin; Pates, Stephen; Hou, Xian-Guang (2018-06-23). "New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta". Papers in Palaeontology. 4 (4): 605–621. doi:10.1002/spp2.1219. ISSN 2056-2802. S2CID 90258934.
- ^ Guo, J.; Pates, S.; Cong, P.; Daley, A. C.; Edgecombe, G. D.; Chen, T.; Hou, X. (2018). "A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota". Papers in Palaeontology. 5 (1). ISSN 2056-2799.
- ^ Artem Kouchinsky; Stefan Bengtson; Ed Landing; Michael Steiner; Michael Vendrasco; Karen Ziegler (2017). "Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia". Acta Palaeontologica Polonica. 62 (2): 311–440. doi:10.4202/app.00289.2016.
- ^ Xingliang Zhang; Wei Liu; Yukio Isozaki; Tomohiko Sato (2017). "Centimeter-wide worm-like fossils from the lowest Cambrian of South China". Scientific Reports. 7 (1): Article number 14504. Bibcode:2017NatSR...714504Z. doi:10.1038/s41598-017-15089-y. PMC 5674079. PMID 29109509.
- ^ Mats E. Eriksson; Luke A. Parry; David M. Rudkin (2017). "Earth's oldest 'Bobbit worm' – gigantism in a Devonian eunicidan polychaete". Scientific Reports. 7: Article number 43061. Bibcode:2017NatSR...743061E. doi:10.1038/srep43061. PMC 5318920. PMID 28220886.
- ^ T. Hassenkam; M. P. Andersson; K. N. Dalby; D. M. A. Mackenzie; M. T. Rosing (2017). "Elements of Eoarchean life trapped in mineral inclusions". Nature. 548 (7665): 78–81. Bibcode:2017Natur.548...78H. doi:10.1038/nature23261. PMID 28738409. S2CID 205257931.
- ^ Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T. S. (2 March 2017). "Evidence for early life in Earth's oldest hydrothermal vent precipitates" (PDF). Nature. 543 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. S2CID 2420384.
- ^ Takayuki Tashiro; Akizumi Ishida; Masako Hori; Motoko Igisu; Mizuho Koike; Pauline Méjean; Naoto Takahata; Yuji Sano; Tsuyoshi Komiya (2017). "Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada". Nature. 549 (7673): 516–518. Bibcode:2017Natur.549..516T. doi:10.1038/nature24019. PMID 28959955. S2CID 4470796.
- ^ Martin J. Whitehouse; Daniel J. Dunkley; Monika A. Kusiak; Simon A. Wilde (2019). "On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador". Precambrian Research. 323: 70–81. Bibcode:2019PreR..323...70W. doi:10.1016/j.precamres.2019.01.001. S2CID 134499370.
- ^ Tara Djokic; Martin J. Van Kranendonk; Kathleen A. Campbell; Malcolm R. Walter; Colin R. Ward (2017). "Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits". Nature Communications. 8: Article number 15263. Bibcode:2017NatCo...815263D. doi:10.1038/ncomms15263. PMC 5436104. PMID 28486437.
- ^ Dorothy Z. Oehler; Maud M. Walsh; Kenichiro Sugitani; Ming-Chang Liu; Christopher H. House (2017). "Large and robust lenticular microorganisms on the young Earth". Precambrian Research. 296: 112–119. Bibcode:2017PreR..296..112O. doi:10.1016/j.precamres.2017.04.031.
- ^ Zachary R. Adam; Mark L. Skidmore; David W. Mogk; Nicholas J. Butterfield (2017). "A Laurentian record of the earliest fossil eukaryotes". Geology. 45 (5): 387–390. Bibcode:2017Geo....45..387A. doi:10.1130/G38749.1.
- ^ Stefan Bengtson; Birger Rasmussen; Magnus Ivarsson; Janet Muhling; Curt Broman; Federica Marone; Marco Stampanoni; Andrey Bekker (2017). "Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt". Nature Ecology & Evolution. 1 (6): Article number 0141. doi:10.1038/s41559-017-0141. hdl:20.500.11937/67718. PMID 28812648. S2CID 25586788.
- ^ Qing Tang; Ke Pang; Xunlai Yuan; Shuhai Xiao (2017). "Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Chuaria". Geology. 45 (1): 75–78. Bibcode:2017Geo....45...75T. doi:10.1130/G38680.1.
- ^ Phoebe A. Cohen; Justin V. Strauss; Alan D. Rooney; Mukul Sharma; Nicholas Tosca (2017). "Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote". Science Advances. 3 (6): e1700095. Bibcode:2017SciA....3E0095C. doi:10.1126/sciadv.1700095. PMC 5489269. PMID 28782008.
- ^ Zongjun Yin; John A. Cunningham; Kelly Vargas; Stefan Bengtson; Maoyan Zhu; Philip C.J. Donoghue (2017). "Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng'an Biota". Precambrian Research. 301: 145–151. Bibcode:2017PreR..301..145Y. doi:10.1016/j.precamres.2017.08.009. hdl:1983/b9709cfd-7d3b-42c4-a86a-fa8657ac548d.
- ^ Jennifer F. Hoyal Cuthill; Simon Conway Morris (2017). "Nutrient-dependent growth underpinned the Ediacaran transition to large body size" (PDF). Nature Ecology & Evolution. 1 (8): 1201–1204. doi:10.1038/s41559-017-0222-7. PMID 29046572. S2CID 3639850.
- ^ Alana C. Sharp; Alistair R. Evans; Siobhan A. Wilson; Patricia Vickers-Rich (2017). "First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life". Precambrian Research. 299: 303–308. Bibcode:2017PreR..299..303S. doi:10.1016/j.precamres.2017.07.023.
- ^ E. F. Smith; L. L. Nelson; S. M. Tweedt; H. Zeng; J. B. Workman (2017). "A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link". Proceedings of the Royal Society B: Biological Sciences. 284 (1858): 20170934. doi:10.1098/rspb.2017.0934. PMC 5524506. PMID 28701565.
- ^ Zofia Dubicka; Przemysław Gorzelak (2017). "Unlocking the biomineralization style and affinity of Paleozoic fusulinid foraminifera". Scientific Reports. 7 (1): Article number 15218. Bibcode:2017NatSR...715218D. doi:10.1038/s41598-017-15666-1. PMC 5680253. PMID 29123221.
- ^ Chenyang Cai; Richard A. B. Leschen; David S. Hibbett; Fangyuan Xia; Diying Huang (2017). "Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous". Nature Communications. 8: Article number 14894. Bibcode:2017NatCo...814894C. doi:10.1038/ncomms14894. PMC 5357310. PMID 28300055.
- ^ R. W. Howe (2017). "Acadialithus, a new nannofossil genus from offshore Eastern Newfoundland, Canada". Journal of Nannoplankton Research. 37 (1): 61–66. doi:10.58998/jnr2123.
- ^ a b Grzegorz Worobiec; Frank Harald Neumann; Elżbieta Worobiec; Verena Nitz; Christoph Hartkopf-Fröder (2017). "New fungal cephalothecoid-like fructifications from central European Neogene deposits". Fungal Biology. 121 (3): 285–292. doi:10.1016/j.funbio.2016.12.005. PMID 28215354.
- ^ a b Serge V. Naugolnykh (2017). "Lower Kungurian shallow-water lagoon biota of Middle Cis-Urals, Russia: towards paleoecological reconstruction". Global Geology (English Edition). 20 (1): 1–13. doi:10.3969/j.issn.1673-9736.2017.01.01.
- ^ a b c d e f g h i Fumio Kobayashi (2017). "Late Carboniferous and Early Permian fusulines of the Akiyoshi Limestone Group in the Wakatakeyama area, Akiyoshi (Japan) – Biostratigraphy, biogeography, and biodiversity". Revue de Paléobiologie, Genève. 36 (1): 1–155. doi:10.5281/zenodo.814077.
- ^ Marcelo G. Carrera; Ricardo A. Astini; Fernando J. Gomez (2017). "A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium". Journal of Paleontology. 91 (1): 73–85. Bibcode:2017JPal...91...73C. doi:10.1017/jpa.2016.145. hdl:11336/45885. S2CID 131902454.
- ^ a b c d e f Arkamitra Vishnu (née Mandal); Mahasin Ali Khan; Meghma Bera; David L. Dilcher; Subir Bera (2017). "Fossil Asterinaceae in the phyllosphere of the eastern Himalayan Neogene Siwalik forest and their palaeoecological significance". Botanical Journal of the Linnean Society. 185 (2): 147–167. doi:10.1093/botlinnean/box050.
- ^ Kuniteru Matsumaru (2017). "Larger Foraminifera from the Philippine Archipelago". Micropaleontology. 63 (2–4): 77–253. doi:10.47894/mpal.63.2.01.
- ^ Emmanuelle J. Javaux; Andrew H. Knoll (2017). "Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution". Journal of Paleontology. 91 (2): 199–229. Bibcode:2017JPal...91..199J. doi:10.1017/jpa.2016.124. S2CID 15086503.
- ^ a b Phoebe A. Cohen; Spencer W. Irvine; Justin V. Strauss (2017). "Vase-shaped microfossils from the Tonian Callison Lake Formation of Yukon, Canada: taxonomy, taphonomy and stratigraphic palaeobiology". Palaeontology. 60 (5): 683–701. doi:10.1111/pala.12315. S2CID 134894899.
- ^ a b Cleber F. Alves; Francisco Henrique de Oliveira Lima; Seirin Shimabukuro (2017). "New Aptian calcareous nannofossil species from Brazil". Journal of Nannoplankton Research. 37 (1): 15–24. doi:10.58998/jnr2004.
- ^ Vladimir A. Musatov (2017). "A new species of the genus Chiphragmalithus from the Ypresian stage (early Eocene) in the northern part of the Caspian Depression (Russia)". Journal of Nannoplankton Research. 37 (1): 67–76. doi:10.58998/jnr2183.
- ^ Wei Du; Xun Lian Wang; Tsuyoshi Komiya; Ran Zhao; Yue Wang (2017). "Dendroid multicellular thallophytes preserved in a Neoproterozoic black phosphorite in southern China". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 1–11. doi:10.1080/03115518.2016.1159408. S2CID 130894232.
- ^ Bing Shen; Shuhai Xiao; Chuanming Zhou; Lin Dong; Jieqiong Chang; Zhe Chen (2017). "A new modular palaeopascichnid fossil Curviacus ediacaranus new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China". Geological Magazine. 154 (6): 1257–1268. Bibcode:2017GeoM..154.1257S. doi:10.1017/S001675681700036X. S2CID 131980880.
- ^ a b c Min Shi; Qinglai Feng; Maliha Zareen Khan; Shixing Zhu (2017). "An eukaryote-bearing microbiota from the early mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance". Precambrian Research. 303: 709–726. Bibcode:2017PreR..303..709S. doi:10.1016/j.precamres.2017.09.013.
- ^ a b c d L. Morais; D.J.G. Lahr; I.D. Rudnitzki; B.T. Freitas; G.R. Romero; S.M. Porter; A.H. Knoll; T.R. Fairchild (2019). "Insights into vase-shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries". Journal of Paleontology. 93 (4): 612–627. Bibcode:2019JPal...93..612M. doi:10.1017/jpa.2019.6. S2CID 189991021.
- ^ Yifan Xiao; Noritoshi Suzuki; Weihong He (2017). "Applications and limitations of micro-XCT imaging in the studies of Permian radiolarians: A new genus with bi-polar main spines". Acta Palaeontologica Polonica. 62 (3): 647–656. doi:10.4202/app.00367.2017.
- ^ a b c Stefan Bengtson; Therese Sallstedt; Veneta Belivanova; Martin Whitehouse (2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLOS Biology. 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791.
- ^ Qing Tang; Nigel C. Hughes; N. Ryan McKenzie; Paul M. Myrow; Shuhai Xiao (2017). "Late Mesoproterozoic – early Neoproterozoic organic-walled microfossils from the Madhubani Group of the Ganga Valley, northern India". Palaeontology. 60 (6): 869–891. doi:10.1111/pala.12323.
- ^ Ye Wang; Yue Wang; Wei Du (2017). "A rare disc-like holdfast of the Ediacaran macroalga from South China". Journal of Paleontology. 91 (6): 1091–1101. Bibcode:2017JPal...91.1091W. doi:10.1017/jpa.2017.43. S2CID 90112117.
- ^ E. Cruz-Abad; L. Consorti; M. Di Lucia; M. Parente; E. Caus (2017). "Fissumella motolae n. gen. n. sp., a new soritoidean (Foraminifera) from the lowermost Albian carbonate platform facies of central and southern Italy". Cretaceous Research. 78: 1–7. Bibcode:2017CrRes..78....1C. doi:10.1016/j.cretres.2017.05.024.
- ^ a b Felix Schlagintweit; Koorosh Rashidi (2017). "Persiella pseudolituus n. gen., n. sp., and Flabelloperforata tarburensis n. gen., n. sp., two new larger benthic foraminifera from the Upper Maastrichtian of Iran" (PDF). Acta Palaeontologica Romaniae. 13 (2): 3–19. Archived from the original (PDF) on 2018-03-21. Retrieved 2018-03-20.
- ^ Zbigniew Szczepanik; Thomas Servais; Anna Żylińska (2017). "Very large acritarchs from the Furongian (upper Cambrian) rocks of the Holy Cross Mountains, central Poland". Palynology. 41 (sup1): 10–22. Bibcode:2017Paly...41S..10S. doi:10.1080/01916122.2017.1366205. S2CID 134279617.
- ^ Heda Agić; Małgorzata Moczydłowska; Leiming Yin (2017). "Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton - a window into the early eukaryote evolution". Precambrian Research. 297: 101–130. Bibcode:2017PreR..297..101A. doi:10.1016/j.precamres.2017.04.042.
- ^ Sam W. Heads; Andrew N. Miller; J. Leland Crane; M. Jared Thomas; Danielle M. Ruffatto; Andrew S. Methven; Daniel B. Raudabaugh; Yinan Wang (2017). "The oldest fossil mushroom". PLOS ONE. 12 (6): e0178327. Bibcode:2017PLoSO..1278327H. doi:10.1371/journal.pone.0178327. PMC 5462346. PMID 28591180.
- ^ Sam W. Heads; Andrew N. Miller; J. Leland Crane (2017). "On the name of the oldest fossil mushroom". Mycological Progress. 16 (11–12): 1071–1072. doi:10.1007/s11557-017-1355-4. S2CID 36044870.
- ^ Michael Krings; Hans Kerp; Edith L. Taylor; Carla J. Harper (2017). "Hagenococcus aggregatus nov. gen. et sp., a microscopic, colony-forming alga from the 410-million-yr-old Rhynie chert". Nova Hedwigia. 105 (1–2): 205–217. doi:10.1127/nova_hedwigia/2017/0406.
- ^ Michael A. Kaminski; Anna Waskowska; Septriandi Chan (2017). "Haplophragmoides arcticus, n. sp., a new species from the Pleistocene of the Central Arctic Ocean". Micropaleontology. 62 (6): 509–513. Bibcode:2017MiPal..62..509K. doi:10.47894/mpal.62.6.05.
- ^ a b c Luana Morais; Thomas Rich Fairchild; Daniel J.G. Lahr; Isaac D. Rudnitzki; J. William Schopf; Amanda K. Garcia; Anatoliy B. Kudryavtsev; Guilherme R. Romero (2017). "Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization". Journal of Paleontology. 91 (3): 393–406. Bibcode:2017JPal...91..393M. doi:10.1017/jpa.2017.16. S2CID 54530838.
- ^ Paula Dentzien-Dias; George Poinar (Jr.); Heitor Francischini (2017). "A new actinomycete from a Guadalupian vertebrate coprolite from Brazil". Historical Biology: An International Journal of Paleobiology. 29 (6): 770–776. doi:10.1080/08912963.2016.1241247. S2CID 89081153.
- ^ George Poinar, Jr. (2017). "Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms". Journal of Medical Entomology. 54 (4): 895–900. doi:10.1093/jme/tjw247. PMID 28399212. S2CID 205177122.
- ^ Daniel Ţabără; Hamid Slimani; Silvia Mare; Carmen Mariana Chira (2017). "Integrated biostratigraphy and palaeoenvironmental interpretation of the Upper Cretaceous to Paleocene succession in the northern Moldavidian Domain (Eastern Carpathians, Romania)". Cretaceous Research. 77: 102–123. Bibcode:2017CrRes..77..102T. doi:10.1016/j.cretres.2017.04.021.
- ^ a b c d e f g Paul R. Bown; Jeremy R. Young; Jacqueline A. Lees (2017). "On the Cretaceous origin of the Order Syracosphaerales and the genus Syracosphaera". Journal of Micropalaeontology. 36 (2): 153–165. Bibcode:2017JMicP..36..153B. doi:10.1144/jmpaleo2016-001. S2CID 53409780.
- ^ Rui O. B. P. da Gama (2017). "Spearlithus, a new Pleistocene calcareous nannofossil genus from shallow marine settings of the Dominican Republic". Micropaleontology. 62 (4): 273–291. Bibcode:2017MiPal..62..273D. doi:10.47894/mpal.62.4.01. S2CID 248380078.
- ^ M. Görmüş; F. A. Ameen Lawa; Q.A.M. Al Nuaimy (2017). "Suraqalatia brasieri n.gen., n.sp. (larger foraminifera) from the Maastrichtian of Sulaimani area in northern Iraq". Arabian Journal of Geosciences. 10 (16): Article 365. doi:10.1007/s12517-017-3145-3. S2CID 133941214.
- ^ a b George Poinar Jr. (2017). "Two new genera, Mycophoris gen. nov., (Orchidaceae) and Synaptomitus gen. nov. (Basidiomycota) based on a fossil seed with developing embryo and associated fungus in Dominican amber". Botany. 95 (1): 1–8. doi:10.1139/cjb-2016-0118.
- ^ Marc-Andre Selosse; Mark Brundrett; John Dearnaley; Vincent S.F.T. Merckx; Finn Rasmussen; Lawrence W. Zettler; Hanne N. Rasmussen (2017). "Why Mycophoris is not an orchid seedling, and why Synaptomitus is not a fungal symbiont within this fossil". Botany. 95 (9): 865–868. doi:10.1139/cjb-2017-0038.
- ^ Felix Schlagintweit; Koorosh Rashidi; Farzaneh Barani (2017). "Tarburina zagrosiana n. gen., n. sp., a new larger benthic porcelaneous foraminifer from the late Maastrichtian of Iran". Journal of Micropalaeontology. 36 (2): 183–190. doi:10.1144/jmpaleo2016-019. S2CID 56370885.
- ^ Michael Krings; Carla J. Harper (2017). "A mantled fungal reproductive unit from the Lower Devonian Windyfield chert, Scotland, with prominent spines and otherwise shaped projections extending out from the mantle". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 201–211. doi:10.1127/njgpa/2017/0677.
- ^ Min Shi; Qing-Lai Feng; Maliha Zareen Khan; Stanley Awramik; Shi-Xing Zhu (2017). "Silicified microbiota from the Paleoproterozoic Dahongyu Formation, Tianjin, China". Journal of Paleontology. 91 (3): 369–392. Bibcode:2017JPal...91..369S. doi:10.1017/jpa.2016.163. S2CID 132359467.
- ^ Matthijs A. Smit; Klaus Mezger (2017). "Earth's early O2 cycle suppressed by primitive continents". Nature Geoscience. 10 (10): 788–792. Bibcode:2017NatGe..10..788S. doi:10.1038/ngeo3030.
- ^ Paul F. Hoffman; Dorian S. Abbot; Yosef Ashkenazy; Douglas I. Benn; Jochen J. Brocks; Phoebe A. Cohen; Grant M. Cox; Jessica R. Creveling; Yannick Donnadieu; Douglas H. Erwin; Ian J. Fairchild; David Ferreira; Jason C. Goodman; Galen P. Halverson; Malte F. Jansen; Guillaume Le Hir; Gordon D. Love; Francis A. Macdonald; Adam C. Maloof; Camille A. Partin; Gilles Ramstein; Brian E. J. Rose; Catherine V. Rose; Peter M. Sadler; Eli Tziperman; Aiko Voigt; Stephen G. Warren (2017). "Snowball Earth climate dynamics and Cryogenian geology-geobiology". Science Advances. 3 (11): e1600983. Bibcode:2017SciA....3E0983H. doi:10.1126/sciadv.1600983. PMC 5677351. PMID 29134193.
- ^ Jochen J. Brocks; Amber J. M. Jarrett; Eva Sirantoine; Christian Hallmann; Yosuke Hoshino; Tharika Liyanage (2017). "The rise of algae in Cryogenian oceans and the emergence of animals". Nature. 548 (7669): 578–581. Bibcode:2017Natur.548..578B. doi:10.1038/nature23457. PMID 28813409. S2CID 205258987.
- ^ Anatoly D. Erlykin; David A. T. Harper; Terry Sloan; Arnold W. Wolfendale (2017). "Mass extinctions over the last 500 myr: an astronomical cause?" (PDF). Palaeontology. 60 (2): 159–167. Bibcode:2017Palgy..60..159E. doi:10.1111/pala.12283. S2CID 133407217.
- ^ Junpeng Zhang; Tailiang Fan; Yuandong Zhang; Gary G. Lash; Yifan Li; Yue Wu (2017). "Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation". Scientific Reports. 7 (1): Article number 8550. Bibcode:2017NatSR...7.8550Z. doi:10.1038/s41598-017-07904-3. PMC 5561082. PMID 28819268.
- ^ Michael Tatzel; Friedhelm von Blanckenburg; Marcus Oelze; Julien Bouchez; Dorothee Hippler (2017). "Late Neoproterozoic seawater oxygenation by siliceous sponges". Nature Communications. 8 (1): Article number 621. Bibcode:2017NatCo...8..621T. doi:10.1038/s41467-017-00586-5. PMC 5606986. PMID 28931817.
- ^ Pedro Cermeño; Michael J. Benton; Óscar Paz; Christian Vérard (2017). "Trophic and tectonic limits to the global increase of marine invertebrate diversity". Scientific Reports. 7 (1): Article number 15969. Bibcode:2017NatSR...715969C. doi:10.1038/s41598-017-16257-w. PMC 5698323. PMID 29162866.
- ^ Cole T. Edwards; Matthew R. Saltzman; Dana L. Royer; David A. Fike (2017). "Oxygenation as a driver of the Great Ordovician Biodiversification Event". Nature Geoscience. 10 (12): 925–929. Bibcode:2017NatGe..10..925E. doi:10.1038/s41561-017-0006-3. S2CID 134884032.
- ^ Georg Feulner (2017). "Formation of most of our coal brought Earth close to global glaciation". Proceedings of the National Academy of Sciences of the United States of America. 114 (43): 11333–11337. Bibcode:2017PNAS..11411333F. doi:10.1073/pnas.1712062114. PMC 5664543. PMID 29073052.
- ^ Massimo Bernardi; Fabio Massimo Petti; Evelyn Kustatscher; Matthias Franz; Christoph Hartkopf-Fröder; Conrad C. Labandeira; Torsten Wappler; Johanna H.A. van Konijnenburg-van Cittert; Brandon R. Peecook; Kenneth D. Angielczyk (2017). "Late Permian (Lopingian) terrestrial ecosystems: A global comparison with new data from the low-latitude Bletterbach Biota". Earth-Science Reviews. 175: 18–43. Bibcode:2017ESRv..175...18B. doi:10.1016/j.earscirev.2017.10.002.
- ^ S. D. Burgess; J. D. Muirhead; S. A. Bowring (2017). "Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction". Nature Communications. 8 (1): Article number 164. Bibcode:2017NatCo...8..164B. doi:10.1038/s41467-017-00083-9. PMC 5537227. PMID 28761160.
- ^ Pia A. Viglietti; Bruce S. Rubidge; Roger M. H. Smith (2017). "New Late Permian tectonic model for South Africa's Karoo Basin: foreland tectonics and climate change before the end-Permian crisis". Scientific Reports. 7 (1): Article number 10861. Bibcode:2017NatSR...710861V. doi:10.1038/s41598-017-09853-3. PMC 5589945. PMID 28883403.
- ^ Rowan C. Martindale; William J. Foster; Felicitász Velledits (2017). "The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 100–115. Bibcode:2019PPP...513..100M. doi:10.1016/j.palaeo.2017.08.014. S2CID 135338869.
- ^ William J. Foster; Silvia Danise; Gregory D. Price; Richard J. Twitchett (2017). "Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy". PLOS ONE. 12 (3): e0172321. Bibcode:2017PLoSO..1272321F. doi:10.1371/journal.pone.0172321. PMC 5351997. PMID 28296886.
- ^ J.H.F.L. Davies; A. Marzoli; H. Bertrand; N. Youbi; M. Ernesto; U. Schaltegger (2017). "End-Triassic mass extinction started by intrusive CAMP activity". Nature Communications. 8: Article number 15596. Bibcode:2017NatCo...815596D. doi:10.1038/ncomms15596. PMC 5460029. PMID 28561025.
- ^ Lawrence M. E. Percival; Micha Ruhl; Stephen P. Hesselbo; Hugh C. Jenkyns; Tamsin A. Mather; Jessica H. Whiteside (2017). "Mercury evidence for pulsed volcanism during the end-Triassic mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 114 (30): 7929–7934. Bibcode:2017PNAS..114.7929P. doi:10.1073/pnas.1705378114. PMC 5544315. PMID 28630294.
- ^ Adam B. Jost; Aviv Bachan; Bas van de Schootbrugge; Kimberly V. Lau; Karrie L. Weaver; Kate Maher; Jonathan L. Payne (2017). "Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction". Geochemistry, Geophysics, Geosystems. 18 (8): 3093–3108. Bibcode:2017GGG....18.3093J. doi:10.1002/2017GC006941. hdl:1874/362214. S2CID 133679444.
- ^ Denver Warwick Fowler (2017). "Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America". PLOS ONE. 12 (11): e0188426. Bibcode:2017PLoSO..1288426F. doi:10.1371/journal.pone.0188426. PMC 5699823. PMID 29166406.
- ^ Charles G. Bardeen; Rolando R. Garcia; Owen B. Toon; Andrew J. Conley (2017). "On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections". Proceedings of the National Academy of Sciences of the United States of America. 114 (36): E7415–E7424. Bibcode:2017PNAS..114E7415B. doi:10.1073/pnas.1708980114. PMC 5594694. PMID 28827324.
- ^ Julia Brugger; Georg Feulner; Stefan Petri (2017). "Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous" (PDF). Geophysical Research Letters. 44 (1): 419–427. Bibcode:2017GeoRL..44..419B. doi:10.1002/2016GL072241. S2CID 53631053.
- ^ Natalia Artemieva; Joanna Morgan; Expedition 364 Science Party (2017). "Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub". Geophysical Research Letters. 44 (20): 10, 180–10, 188. Bibcode:2017GeoRL..4410180A. doi:10.1002/2017GL074879. hdl:10044/1/51225.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Kunio Kaiho; Naga Oshima (2017). "Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction". Scientific Reports. 7 (1): Article number 14855. Bibcode:2017NatSR...714855K. doi:10.1038/s41598-017-14199-x. PMC 5680197. PMID 29123110.
- ^ Thomas S. Tobin (2017). "Recognition of a likely two phased extinction at the K-Pg boundary in Antarctica". Scientific Reports. 7 (1): Article number 16317. Bibcode:2017NatSR...716317T. doi:10.1038/s41598-017-16515-x. PMC 5701184. PMID 29176556.
- ^ Nicholas J. Minter; Luis A. Buatois; M. Gabriela Mángano; Neil S. Davies; Martin R. Gibling; Robert B. MacNaughton; Conrad C. Labandeira (2017). "Early bursts of diversification defined the faunal colonization of land". Nature Ecology & Evolution. 1 (7): Article number 0175. doi:10.1038/s41559-017-0175. S2CID 59988716.
- ^ Stephanie E. Suarez; Michael E. Brookfield; Elizabeth J. Catlos; Daniel F. Stöckli (2017). "A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal". PLOS ONE. 12 (6): e0179262. Bibcode:2017PLoSO..1279262S. doi:10.1371/journal.pone.0179262. PMC 5489152. PMID 28658320.
- ^ Chad M. Eliason; Leah Hudson; Taylor Watts; Hector Garza; Julia A. Clarke (2017). "Exceptional preservation and the fossil record of tetrapod integument". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20170556. doi:10.1098/rspb.2017.0556. PMC 5597822. PMID 28878057.
- ^ Neil Brocklehurst; Michael O. Day; Bruce S. Rubidge; Jörg Fröbisch (2017). "Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian". Proceedings of the Royal Society B: Biological Sciences. 284 (1852): 20170231. doi:10.1098/rspb.2017.0231. PMC 5394676. PMID 28381616.
- ^ Roger A. Close; Roger B.J. Benson; Paul Upchurch; Richard J. Butler (2017). "Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification". Nature Communications. 8: Article number 15381. Bibcode:2017NatCo...815381C. doi:10.1038/ncomms15381. PMC 5458146. PMID 28530240.
- ^ Matteo Fabbri; Nicolás Mongiardino Koch; Adam C. Pritchard; Michael Hanson; Eva Hoffman; Gabriel S. Bever; Amy M. Balanoff; Zachary S. Morris; Daniel J. Field; Jasmin Camacho; Timothy B. Rowe; Mark A. Norell; Roger M. Smith; Arhat Abzhanov; Bhart-Anjan S. Bhullar (2017). "The skull roof tracks the brain during the evolution and development of reptiles including birds" (PDF). Nature Ecology & Evolution. 1 (10): 1543–1550. doi:10.1038/s41559-017-0288-2. PMID 29185519. S2CID 3326766.
- ^ Jeremy E. Martin; Peggy Vincent; Théo Tacail; Fatima Khaldoune; Essaid Jourani; Nathalie Bardet; Vincent Balter (2017). "Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction". Current Biology. 27 (11): 1641–1644.e2. doi:10.1016/j.cub.2017.04.043. PMID 28552352. S2CID 4161031.
- ^ Martin Qvarnström; Grzegorz Niedźwiedzki; Paul Tafforeau; Živil Žigaitė; Per E. Ahlberg (2017). "Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data". Scientific Reports. 7 (1): Article number 2723. Bibcode:2017NatSR...7.2723Q. doi:10.1038/s41598-017-02893-9. PMC 5457397. PMID 28578409.
- ^ Piotr Bajdek; Krzysztof Owocki; Andrey G. Sennikov; Valeriy K. Golubev; Grzegorz Niedźwiedzki (2017). "Residues from the Upper Permian carnivore coprolites from Vyazniki in Russia - key questions in reconstruction of feeding habits". Palaeogeography, Palaeoclimatology, Palaeoecology. 482: 70–82. Bibcode:2017PPP...482...70B. doi:10.1016/j.palaeo.2017.05.033.
- ^ Martín D. Ezcurra; Lucas E. Fiorelli; Agustín G. Martinelli; Sebastián Rocher; M. Belén von Baczko; Miguel Ezpeleta; Jeremías R. A. Taborda; E. Martín Hechenleitner; M. Jimena Trotteyn; Julia B. Desojo (2017). "Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea". Nature Ecology & Evolution. 1 (10): 1477–1483. doi:10.1038/s41559-017-0305-5. hdl:11336/41466. PMID 29185518. S2CID 10007967.
- ^ David J. Button; Graeme T. Lloyd; Martín D. Ezcurra; Richard J. Butler (2017). "Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea". Nature Communications. 8 (1): Article number 733. Bibcode:2017NatCo...8..733B. doi:10.1038/s41467-017-00827-7. PMC 5635108. PMID 29018290.
- ^ Michael Frese; Gerda Gloy; Rolf G. Oberprieler; Damian B. Gore (2017). "Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping". PLOS ONE. 12 (6): e0179029. Bibcode:2017PLoSO..1279029F. doi:10.1371/journal.pone.0179029. PMC 5459505. PMID 28582427.
- ^ Adiël A. Klompmaker; Michał Kowalewski; John Warren Huntley; Seth Finnegan (2017). "Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems". Science. 356 (6343): 1178–1180. doi:10.1126/science.aam7468. PMID 28619943. S2CID 206657244.
- ^ S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2017). "Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes". Nature Communications. 8 (1): Article number 1134. Bibcode:2017NatCo...8.1134B. doi:10.1038/s41467-017-01225-9. PMC 5656689. PMID 29070888.
- ^ David Evans; Marcus P. S. Badger; Gavin L. Foster; Michael J. Henehan; Caroline H. Lear; James C. Zachos (2018). "No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record". Nature Communications. 9 (1): Article number 2875. Bibcode:2018NatCo...9.2875E. doi:10.1038/s41467-018-05303-4. PMC 6056492. PMID 30038330.
- ^ S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2018). "Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record'". Nature Communications. 9 (1): Article number 2874. Bibcode:2018NatCo...9.2874B. doi:10.1038/s41467-018-05304-3. PMC 6056461. PMID 30038223.
- ^ Sean P. S. Gulick; Amelia E. Shevenell; Aleksandr Montelli; Rodrigo Fernandez; Catherine Smith; Sophie Warny; Steven M. Bohaty; Charlotte Sjunneskog; Amy Leventer; Bruce Frederick; Donald D. Blankenship (2017). "Initiation and long-term instability of the East Antarctic Ice Sheet" (PDF). Nature. 552 (7684): 225–229. Bibcode:2017Natur.552..225G. doi:10.1038/nature25026. PMID 29239353. S2CID 4404071.
- ^ Sandra Kirtland Turner; Pincelli M. Hull; Lee R. Kump; Andy Ridgwell (2017). "A probabilistic assessment of the rapidity of PETM onset". Nature Communications. 8 (1): Article number 353. Bibcode:2017NatCo...8..353K. doi:10.1038/s41467-017-00292-2. PMC 5572461. PMID 28842564.
- ^ Marcus Gutjahr; Andy Ridgwell; Philip F. Sexton; Eleni Anagnostou; Paul N. Pearson; Heiko Pälike; Richard D. Norris; Ellen Thomas; Gavin L. Foster (2017). "Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum". Nature. 548 (7669): 573–577. Bibcode:2017Natur.548..573G. doi:10.1038/nature23646. PMC 5582631. PMID 28858305.
- ^ Orangel Aguilera; Zoneibe Luz; Jorge D. Carrillo-Briceño; László Kocsis; Torsten W. Vennemann; Peter Mann de Toledo; Afonso Nogueira; Kamilla Borges Amorim; Heloísa Moraes-Santos; Marcia Reis Polck; Maria de Lourdes Ruivo; Ana Paula Linhares; Cassiano Monteiro-Neto (2017). "Neogene sharks and rays from the Brazilian 'Blue Amazon'". PLOS ONE. 12 (8): e0182740. Bibcode:2017PLoSO..1282740A. doi:10.1371/journal.pone.0182740. PMC 5568136. PMID 28832664.
- ^ Pietro Sternai; Luca Caricchi; Daniel Garcia-Castellanos; Laurent Jolivet; Tom E. Sheldrake; Sébastien Castelltort (2017). "Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis". Nature Geoscience. 10 (10): 783–787. Bibcode:2017NatGe..10..783S. doi:10.1038/ngeo3032. PMC 5654511. PMID 29081834.
- ^ Bas de Boer; Alan M. Haywood; Aisling M. Dolan; Stephen J. Hunter; Caroline L. Prescott (2017). "The transient response of ice volume to orbital forcing during the warm late Pliocene". Geophysical Research Letters. 44 (20): 10, 486–10, 494. Bibcode:2017GeoRL..4410486D. doi:10.1002/2017GL073535.
- ^ Catalina Pimiento; John N. Griffin; Christopher F. Clements; Daniele Silvestro; Sara Varela; Mark D. Uhen; Carlos Jaramillo (2017). "The Pliocene marine megafauna extinction and its impact on functional diversity" (PDF). Nature Ecology & Evolution. 1 (8): 1100–1106. doi:10.1038/s41559-017-0223-6. PMID 29046566. S2CID 3639394.
- ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; John M. Harris; Glynis E. Jehle; Thure E. Cerling (2017). "Aridity and hominin environments". Proceedings of the National Academy of Sciences of the United States of America. 114 (28): 7331–7336. Bibcode:2017PNAS..114.7331B. doi:10.1073/pnas.1700597114. PMC 5514716. PMID 28652366.
- ^ Jessica E. Tierney; Peter B. deMenocal; Paul D. Zander (2017). "A climatic context for the out-of-Africa migration". Geology. 45 (11): 1023–1026. Bibcode:2017Geo....45.1023T. doi:10.1130/G39457.1.
- ^ Samuel T. Turvey; Jennifer J. Crees; James Hansford; Timothy E. Jeffree; Nick Crumpton; Iwan Kurniawan; Erick Setiyabudi; Thomas Guillerme; Umbu Paranggarimu; Anthony Dosseto; Gerrit D. van den Bergh (2017). "Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution". Proceedings of the Royal Society B: Biological Sciences. 284 (1861): 20171278. doi:10.1098/rspb.2017.1278. PMC 5577490. PMID 28855367.
- ^ Yonatan Sahle; Sireen El Zaatari; Tim D. White (2017). "Hominid butchers and biting crocodiles in the African Plio–Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. 114 (50): 13164–13169. Bibcode:2017PNAS..11413164S. doi:10.1073/pnas.1716317114. PMC 5740633. PMID 29109249.
- ^ Jonathan T. Hagstrum; Richard B. Firestone; Allen West; James C. Weaver; Ted E. Bunch (2017). "Impact-related microspherules in Late Pleistocene Alaskan and Yukon "muck" deposits signify recurrent episodes of catastrophic emplacement". Scientific Reports. 7 (1): Article number 16620. Bibcode:2017NatSR...716620H. doi:10.1038/s41598-017-16958-2. PMC 5709379. PMID 29192242.
- ^ M. Timothy Rabanus-Wallace; Matthew J. Wooller; Grant D. Zazula; Elen Shute; A. Hope Jahren; Pavel Kosintsev; James A. Burns; James Breen; Bastien Llamas; Alan Cooper (2017). "Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions". Nature Ecology & Evolution. 1 (5): Article number 0125. doi:10.1038/s41559-017-0125. PMID 28812683. S2CID 4473573.