mir-194 microRNA precursor family
Identifiers
Symbolmir-194
RfamRF00257
miRBaseMI0000488
miRBase familyMIPF0000055
Other data
RNA typeGene; miRNA
Domain(s)Eukaryota
GOGO:0035195 GO:0035068
SOSO:0001244
PDB structuresPDBe

Origins

edit

In molecular biology, miR-194 microRNA precursor is a small non-coding RNA gene that regulated gene expression. Its expression has been verified in mouse (MI0000236, MI0000733)[1] and in human (MI0000488, MI0000732).[2] mir-194 appears to be a vertebrate-specific miRNA and has now been predicted or experimentally confirmed in a range of vertebrate species (MIPF0000055). The mature microRNA is processed from the longer hairpin precursor by the Dicer enzyme. In this case, the mature sequence is excised from the 5' arm of the hairpin. miR-194 can be derived from two separate loci on human genome, miR-194-1 is encoded on chromosome 1 and miR-194-2 is encoded on chromosome 11.They form a cluster with miR-215 and miR-192, respectively. They initially appear as relatively long transcripts called pri-miRNA, the pri-miR-194-1 corresponds to the cluster miR-194-1/miR-215 and the pri-miR-194-2 to the cluster miR-194-2/miR-192[3]. In other species miR-194 can be derived from two others separate loci : miR-194a and miR-194b.

Expressions

edit

miR-194 is specifically expressed in the human gastro-intestinal tract, it is induced during the differentiation of intestinal epithelial cell. [4]
miR-194 is highly expressed in the liver and was shown to regulate liver functions [5]. miR-194 is generally repressed during cancer.[6][7][8]

Species Distribution

edit

miR-194 is a vertebrate-specific miRNA which is found in species like :

lizard (Anolis carolinensis) [9], monkeys ( Geoffroy's spider monkey (Ateles geoffroyi), gorilla (Gorilla gorilla), rhesus macaque (Macaca mulatta), southern pig-tailed macaque (Macaca nemestrina), Bornean orangutan (Pongo pygmaeus), Common chimpanzee (Pan troglodytes)) [10], cow (Bos taurus) [11], common carp (Cyprinus carpio) [12], dog (Canis familiaris) [13], chinese hamster (Cricetulus griseus) [14], zebrafish (Danio rerio) [15], horse (Equus caballus)[16], chicken (Gallus gallus) [17], platypus (Ornithorhynchus anatinus) [18], medaka aor japanese killifish (Oryzias latipes) [19], sea lamprey (Petromyzon marinus) [20], rat (Rattus norvegicus) [21], Wild boar (Sus scrofa) [22], Zebra Finch (Taeniopygia guttata) [23], xenopus (Xenopus tropicalis) [24]

miR-194 roles

edit

Gastro-intestinal tract cancers and diseases

edit

Colorectal cancer

edit
miR-194 is significantly downregulated in colorectal cancer (CRC) tissues. There is a lower expression of miR-194 in HT-29, HCT-116 and SW-620 CRC cell lines compared to normal colorectal tissues. Lower expression level of miR-194 in patients with CRC tend to be associated with increased tumor size [6]. The tumor suppressor protein p53 induced miR-194, which was identified as a robust p53-responsive miRNa species. miR-194 might have a tumor suppressor function [25].
Conversely, miR-194 might have an angiogenesis effect in CRC cells, down-regulating THBS1, the transcript of thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis.[26].

Colorectal liver metastases

edit
miR-194 is significantly downregulated at the liver invasion front. Analysis showned that enhanced expression of miR-194 at the liver invasion front is an adverse prognostic marker of tumor recurrence and overall survival. miR-194, in addition to its oncogenic capacities, is a negative regulator of activated hepatic stellate cells (HSC) which are overexpressed at the liver invasion front. The hypothesis that the overexpression of HSC at the liver invasion front might result from reduced expression of miR-194 was formulated. Inversely the overexpression of miR-194 might results in enhanced HSC expression which could explain why liver invasion front specific enhanced expression of miR-194 is associated with a rather poor prognosis.[7]

Gastric cancer

edit
In gastric cancer, patients with lower miR-194 expression tended to have larger tumor size and more advanced pT stage. It was shown that miR-194 expression is significantly lower in Borrmann IV type gastric cancer than in Borrmann I, II and III types. miR-194 interacts with N-cadherin and negatively regulates its expression at the translational level. Aberrant expression of N-cadherin has been proved to be associated with invasiveness of carcinoma cells and poor prognosis for gastric cancer. Therefore, miR-194 may play an antimetastatic role by negatively regulating N-cadherin expression in gastric cancer progression.[8]

Adenocarcinoma of the esophagus

edit
An elevated expression of miR-194 was found in adenocarcinoma (ADC). miR-194 is differently expressed between ADC patients with or without Barrett's. miR-194 is overexpressed in Barrett's associated ADC. [27]

Liver cancer

edit
miR-194 is highly expressed in hepatic epithelial cells, but not in mesenchymal-like cells (Kupffer cells and stellate cells). The overexpression of miR-194 in mesenchymal-like cells significantly reduce N-cadherin protein levels and the abilities in invasion and migration. The potential targets of miR-194 are genes implied in metastasis or epithelial-mesenchymal transition like HBEGF, RAC1, PTPN12, ITGA9, SOCS2, and DNMT3A. Therefore, miR-194 may suppress metastasis of liver cancer cells by targeting several genes that function at the different stages of cancer progression and metastasis.[28]
Futhermore, a protein, FZD6, has been identified as an endogenous target of miR-194. The role of FZD6 is to activate pathways which are known to promote malignancy in virus-related hepatocellular carcinoma. In tumor tissue, the expression of miR-194 is decreasing and the expression of FZD6 is increasing. The reexpression of miR-194 induce 70% inhibition of FZD6 expression.[29]

Malignancy in FLC-4 cells

edit
FLC-4 cells are human hepatoma cells. In the liver miR-194 was shown to suppress SLC7A5 gene expression, which is implicated in malignant phenotype. miR-194 is upregulated by spherical cell shape in FLC-4 cells. Therefore the enhancement of miR-194 level by spherical cell shape would suppress malignancy in FLC-4 cells[5]

Hepatitis B virus

edit
miR-194 is significantly up-regulated in hepatitis B e antigen-positive patients. But the older patients with chronic hepatitis B or acute-on-chronic liver failure, have a lower levels of miR-194.[30]

Other cancers

edit

Breast Cancer

edit
miR-194 expression is increased by trastuzumab treatment in HER2 overexpressing breast cancer cells. In these cells miR-194 can significantly inhibit cell migration/invasion in vitro, and tumor growth in vivo. miR-194 directly targets the talin2 gene and downregulates talin2 protein, which is a cytoskeletal protein. Depletion of talin2 inhibits cell migration and invasion in breast cancer cells that overexpress HER2. So the upregulation of mir-194 may contribute to the anti-tumor activity of trastuzumab by downregulating talin2 protein expression and inhibiting cell migration/invasion in HER2 overexpressing breast cancer cells. [31]

Endometrial cancer

edit
The factor BMI1 induce epithelial-mesenchymal transition in endometrial cancer cells, giving them invasive capability, increasing E-cadherin and decreasing Vimentin. The role of miR-194 could be a suppressor of expression of BMI1 by direct binding to the 3' UTR. The experience demonstrates that the reexpression of miR-194 could reverse epithelial-mesenchymal transition phenotype by reducing expression of BMI1. The restoration of miR-194 expression could be an aims for the endometrial cancer therapeutic.[32]

Multiple myeloma

edit
Mdm2 is an important negative regulator of the p53 tumor suppressor and also a p53 responsive gene, this is the p53/Mdm2 autoregulatory loop. The tumor suppressor protein p53 is a key transcriptional activator of pri-miR-194-2 through directly binding to the core promoter element. When Mdm2 is inhibited, miR-194 can be transcriptionally activated by p53 and then modulate Mdm2 expression. The reintroduction of miR-194 in the multiple myeloma (MM) cells, inhibits cell growth and enhances apoptosis. The promoter region of the miR-194-2-192 cluster is hypermethylated in MM cell lines.[33]


Tissue differentiation

edit

Chondrogenic differentiation and Osteoarthrisis

edit
In humans, miR-194 level gradually decrease during Adipose-derived stem cells (ASCs) chondrogenic differentiation. SRY-related high mobility group-Box gene 5 ( Sox5) is expressed in the differentiating cartilage elements and controle the production of the cartilage extracellular matrix. Sox5 3'-UTR contains one putative miR-194 binding site, it is a target of miR-194. Sox5 expression is repressed by miR-194 at protein level. Therefore the downregulation of miR-194 leads to an upregulation of Sox5 and results in enhanced chondrogenic differentiation of ASCs.
In osteoarthrisis, it was found that miR-194 was upregulated and Sox5 downregulated which supresses the chondrogenic differentiation of ASCs.[34]

Intestinal epithelial cell differentiation

edit
Several miRNAs are induced during differentiation of intestinal epithelial cell, but miR-194 is one of the highly induced miRNAs. This regulation is targeted on pri-miRNAs of miR-194, but the induction of pri-miR-194-2 is higher compared with pri-miR-194-1. This process is due to up-regulation by the HNF1A. This transcription factor bind the core element of pri-miR-194-2 promoter and contribute to regulate the expression of miR-194-2.[3]

Organ injury

edit

Renal ischemia reperfusion injury

edit
Renal ischemia reperfusion injury (IRI) is associated with significant morbidity and mortality. miR-194 is downregulated in IRI. [35]

Hepatic injury

edit
The expression of miR-194 is stable and detectable during hepatic injury in patients after liver transplantation.[36]


Others roles

edit

Malaria

edit
miR-194 expression in spleens and livers is significantly downregulated by Plasmodium chabaudi malaria. This downregulation is larger in livers than spleens and will be required to permit the upregulation of target genes in response to infection. [37]

Zebrafish immunology

edit
Experiences showed that overall pattern of miR-194 expression decreased in zebrafish infected by Streptococcus agalatiae and increased in zebrafish infected by Vibrio harveyi. During S.agalatiae and V.harveyi infection, dynamic changes in miR-194 expression patterns were also observed. Experiences also revealed that miR-194 is involved in immune-related gene expression. miR-194 play important roles in zebrafish immunology. [38]

Circadian clock

edit
The core of the molecular pathway regulating circadian clock is the CLOCK/BMAL1 complex and one of his function is to induce the expression of genes which are negative regulators of the family of Period genes (PER1, PER2 and PER3) and others genes. The cluster miR-192/miR-194 targets the 3'UTR of PER genes and the overexpression of this cluster suppresses the synthesis of PER proteins, thereby causing a shortening of the length of the circadian period.[39]

References

edit
  1. ^ Lagos-Quintana, Mariana; Rauhut, Reinhard; Meyer, Jutta; Borkhardt, Arndt; Tuschl, Thomas (2003). "New microRNAs from mouse and human". RNA. 9 (2): 175–179. doi:10.1261/rna.2146903. PMC 1370382. PMID 12554859.{{cite journal}}: CS1 maint: date and year (link)
  2. ^ Michael, MZ (2003). "Reduced accumulation of specific microRNAs in colorectal neoplasia". Mol Cancer Res. 1 (12): 882–891. PMID 14573789. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ a b Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M (2008). "Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation". RNA. 14 (7): 1433–1442. doi:10.1261/rna.810208. PMC 2441992. PMID 18492795.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Song Y, Zhao F, Wang Z, Liu Z, Chiang Y, Xu Y, Gao P, Xu H (2012). "Inverse association between miR-194 expression and tumor invasion in gastric cancer". Annals of Surgical Oncology. 19: 509–517. doi:10.1245/s10434-011-1999-2. PMID 21845495.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ a b Laurent T, Kataoka Y, Kobayashi S, Ando M, Nagamori S, Oda H (2012). "Spherical cell shape of FLC-4 cell, a human hepatoma cell, enhances hepatocyte-specific function and suppresses tumor phenotype through the integration of mRNA-microRNA interaction". Biology Open. 1 (10): 958–964. doi:10.1242/bio.20121438. PMC 3507180. PMID 23213373.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b Chiang Y, Song Y, Wang Z, Liu Z, Gao P, Liang J, Zhu J, Xing C, Xu H (2012). "microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer". Experimental and Therapeutic Medicine. 3 (3): 560–566. doi:10.3892/etm.2011.436. PMC 3438543. PMID 22969930.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ a b Kahlert C, Klupp F, Brand K, Lasitschka F, Diederichs S, Kirchberg J, Rahbari N, Dutta S, Bork U, Fritzmann J, Reissfelder C, Koch M, Weitz J (2011). "Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases". Cancer Science. 102 (10): 1799–2507. doi:10.1111/j.1349-7006.2011.02023.x. PMID 21722265.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ a b Song Y, Zhao F, Wang Z, Liu Z, Chiang Y, Xu Y, Gao P, Xu H (2012). "Inverse association between miR-194 expression and tumor invasion in gastric cancer". Annals of Surgical Oncology. 19: S509-17. doi:10.1245/s10434-011-1999-2. PMID 21845495.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Lyson TR, Sperling EA, Heimberg AM, Gauthier JA, King BL, Peterson KJ (2012). "MicroRNAs support a turtle + lizard clade". Biology Letters. 8 (1): 104–107. doi:10.1098/rsbl.2011.0477. PMC 3259949. PMID 21775315.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005). "Phylogenetic shadowing and computational identification of human microRNA genes". Cell Press. 120 (1): 21–24. doi:10.1016/j.cell.2004.12.031. PMID 15652478.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Jin W, Grant JR, Stothard P, Moore SS, Guan LL (2009). "Characterization of bovine miRNAs by sequencing and bioinformatics analysis". BMC Molecular Biology. 10: 90. doi:10.1186/1471-2199-10-90. PMC 2761914. PMID 19758457.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  12. ^ Yan X, Ding L, Li Y, Zhang X, Liang Y, Sun X, Teng CB (2012). "Identification and profiling of microRNAs from skeletal muscle of the common carp". PLOS ONE. 7 (1): e30925. doi:10.1371/journal.pone.0030925. PMC 3267759. PMID 22303472.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008). "Discovering microRNAs from deep sequencing data using miRDeep". Nat Biotechnol. 26 (4): 407–15. doi:10.1038/nbt1394. PMID 18392026.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Siederdissen CH, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J (2011). "Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering". J Biotechnol. 153 (1–2): 62–75. doi:10.1016/j.jbiotec.2011.02.011. PMC 3119918. PMID 21392545.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005). "The developmental miRNA profiles of zebrafish as determined by small RNA cloning". Genes & Developmant. 19 (11): 1288–1293. doi:10.1101/gad.1310605. PMC 1142552. PMID 15937218.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y (2009). "In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach". Genomics. 94 (2): 125–31. doi:10.1016/j.ygeno.2009.04.006. PMID 19406225.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ International Chicken Genome Sequencing Consortium (2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution". Nature. 432 (7018): 695–716. doi:10.1038/nature03154. PMID 15592404.
  18. ^ Murchison EP, Kheradpour P, Sachidanandam R, Smith C, Hodges E, Xuan Z, Kellis M, Grutzner F, Stark A, Hannon GJ (2008). "Conservation of small RNA pathways in platypus". Genome Res. 18 (6): 995–1004. doi:10.1101/gr.073056.107. PMC 2413167. PMID 18463306.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Li SC, Chan WC, Ho MR, Tsai KW, Hu LY, Lai CH, Hsu CN, Hwang PP, Lin WC (2010). "Discovery and characterization of medaka miRNA genes by next generation sequencing platform". BMC Genomics. 11 (Suppl 4): S8. doi:10.1186/1471-2164-11-S4-S8. PMC 3005926. PMID 21143817.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  20. ^ Heimberg AM, Cowper-Sal-lari R, Semon M, Donoghue PC, Peterson KJ (2010). "microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate". Proc Natl Acad Sci U S A. 107 (45): 19379–83. doi:10.1073/pnas.1010350107. PMC 2984222. PMID 20959416.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Linsen SE, de Wit E, de Bruijn E, Cuppen E (2010). "Small RNA expression and strain specificity in the rat". BMC Genomics. 11: 249. doi:10.1186/1471-2164-11-249. PMC 2864251. PMID 20403161.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  22. ^ Li G, Li Y, Li X, Ning X, Li M, Yang G (2011). "MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing". Journal of Cellular Biochemistry. 112 (5): 1318–1328. doi:10.1002/jcb.23045. PMID 21312241.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backström N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Völker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK (2010). "The genome of a songbird". Nature. 464 (7289): 757–762. doi:10.1038/nature08819. PMC 3187626. PMID 20360741.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ Tang GQ, Maxwell ES (2008). "Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation". Genome Research. 18 (1): 104–112. doi:10.1101/gr.6539108. PMC 2134782. PMID 18032731.
  25. ^ Christian J. Braun, Xin Zhang, Irina Savelyeva, Sonja Wolff, Ute M. Moll, Troels Schepeler, Torben F. Ørntoft, Claus L. Andersen, and Matthias Dobbelstein (2008). "p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest". Cancer Research. 68 (24): 10094–10104. doi:10.1158/0008-5472.CAN-08-1569. PMC 2836584. PMID 19074875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, Schelter JM, Huang Q, Cleary MA, Volpert OV, Thomas-Tikhonenko A (2011). "p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers". Cancer Res. 71 (24): 7490–7901. doi:10.1158/0008-5472.CAN-11-1124. PMC 3242824. PMID 22028325.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Mathé EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, Schetter AJ, Braun R, Reimers M, Kumamoto K, Hughes D, Altorki NK, Casson AG, Liu CG, Wang XW, Yanaihara N, Hagiwara N, Dannenberg AJ, Miyashita M, Croce CM, Harris CC (2009). "MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival". Clinical Cancer Research. 15 (19): 6192–6300. doi:10.1158/1078-0432.CCR-09-1467. PMC 2933109. PMID 19789312.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^ Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R, Xu R, Huang W (2010). "miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice". Hepatology. 52 (6): 2148–2157. doi:10.1002/hep.23915. PMC 3076553. PMID 20979124.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Krützfeldt J, Rösch N, Hausser J, Manoharan M, Zavolan M, Stoffel M (2012). "MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1α) in adult liver and controls expression of frizzled-6". Hepatology. 55 (1): 98–107. doi:10.1002/hep.24658. PMID 21887698.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Ji F, Yang B, Peng X, Ding H, You H, Tien P (2011). "Circulating microRNAs in hepatitis B virus-infected patients". J Viral Hepat. 18 (7): e242-51. doi:10.1111/j.1365-2893.2011.01443.x. PMID 21692939.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Xiao-Feng Le, Maria I. Almeida, Weiqun Mao, Riccardo Spizzo, Simona Rossi, Milena S. Nicoloso, Shu Zhang, Yun Wu, George A. Calin and Robert C. Bast, Jr (2012). "Modulation of MicroRNA-194 and Cell Migration by HER2-Targeting Trastuzumab in Breast Cancer". PLOS ONE. 7 (7): e41170. doi:10.1371/journal.pone.0041170. PMC 3400637. PMID 22829924.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, Sakuragi N (2011). "MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1". Mol Cancer. 18 (7): 1433–1442. doi:10.1261/rna.810208. PMC 2441992. PMID 18492795.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, Garofalo M, Di Leva G, Volinia S, Lin HJ, Perrotti D, Kuehl M, Aqeilan RI, Palumbo A, Croce CM (2010). "Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development". Cancer Cell. 18 (4): 367–381. doi:10.1016/j.ccr.2010.09.005. PMC 3561766. PMID 20951946.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Xu J, Kang Y, Liao WM, Yu L (2012). "MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5". PLOS ONE. 7 (3): e31861. doi:10.1371/journal.pone.0031861. PMC 3291608. PMID 22396742.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J (2012). "Identification of a microRNA signature of renal ischemia reperfusion injury". Proceedings of the National Academy of Sciences. 107 (32): 14339–14344. doi:10.1073/pnas.0912701107. PMC 2922548. PMID 20651252.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Farid WR, Pan Q, van der Meer AJ, de Ruiter PE, Ramakrishnaiah V, de Jonge J, Kwekkeboom J, Janssen HL, Metselaar HJ, Tilanus HW, Kazemier G, van der Laan LJ (2012). "Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation". Liver Transpl. 18 (3): 290–297. doi:10.1002/lt.22438. PMID 21932376.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ Al-Quraishy S, Dkhil MA, Delic D, Abdel-Baki AA, Wunderlich F (2012). "Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria". Parasitology Research. 111 (3): 1093–1101. doi:10.1007/s00436-012-2937-3. PMID 22562236.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Wu TH, Pan CY, Lin MC, Hsieh JC, Hui CF, Chen JY (2012). "In vivo screening of zebrafish microRNA responses to bacterial infection and their possible roles in regulating immune response genes after lipopolysaccharide stimulation". Fish Physiology and Biochemistry. 38 (5): 1299–1510. doi:10.1007/s10695-012-9617-1. PMID 22419229.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Nagel R, Clijsters L, Agami R (2009). "The miRNA-192/194 cluster regulates the Period gene family and the circadian clock". FEBS J. 276 (19): 5447–5455. doi:10.1111/j.1742-4658.2009.07229.x. PMID 19682069.{{cite journal}}: CS1 maint: multiple names: authors list (link)
edit

Category:microRNA